A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and opt...A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and optimized.Then,the key sub-capabilities are identified by quantitatively calculating the contributions made by each sub-capability to the overall capability.Finally,the overall capability is improved by optimizing the identified key sub-capabilities.The theoretical contributions of the proposed approach are as follows.(i)An interpretable capability evaluation model is constructed by employing BRB which can provide complete access to decision-makers.(ii)Key sub-capabilities are identified according to the quantitative contribution analysis results.(iii)Accountable capability improvement is carried out by only optimizing the identified key sub-capabilities.Case study results show that“Surveillance”,“Positioning”,and“Identification”are identified as key sub-capabilities with a summed contribution of 75.55%in an analytical and deducible fashion based on the interpretable capability evaluation model.As a result,the overall capability is improved by optimizing only the identified key sub-capabilities.The overall capability can be greatly improved from 59.20%to 81.80%with a minimum cost of 397.Furthermore,this paper also investigates how optimizing the BRB with more collected data would affect the evaluation results:only optimizing“Surveillance”and“Positioning”can also improve the overall capability to 81.34%with a cost of 370,which thus validates the efficiency of the proposed approach.展开更多
In industrial production and engineering operations,the health state of complex systems is critical,and predicting it can ensure normal operation.Complex systems have many monitoring indicators,complex coupling struct...In industrial production and engineering operations,the health state of complex systems is critical,and predicting it can ensure normal operation.Complex systems have many monitoring indicators,complex coupling structures,non-linear and time-varying characteristics,so it is a challenge to establish a reliable prediction model.The belief rule base(BRB)can fuse observed data and expert knowledge to establish a nonlinear relationship between input and output and has well modeling capabilities.Since each indicator of the complex system can reflect the health state to some extent,the BRB is built based on the causal relationship between system indicators and the health state to achieve the prediction.A health state prediction model based on BRB and long short term memory for complex systems is proposed in this paper.Firstly,the LSTMis introduced to predict the trend of the indicators in the system.Secondly,the Density Peak Clustering(DPC)algorithmis used todetermine referential values of indicators for BRB,which effectively offset the lack of expert knowledge.Then,the predicted values and expert knowledge are fused to construct BRB to predict the health state of the systems by inference.Finally,the effectiveness of the model is verified by a case study of a certain vehicle hydraulic pump.展开更多
Safety assessment is one of important aspects in health management.In safety assessment for practical systems,three problems exist:lack of observation information,high system complexity and environment interference.Be...Safety assessment is one of important aspects in health management.In safety assessment for practical systems,three problems exist:lack of observation information,high system complexity and environment interference.Belief rule base with attribute reliability(BRB-r)is an expert system that provides a useful way for dealing with these three problems.In BRB-r,once the input information is unreliable,the reliability of belief rule is influenced,which further influences the accuracy of its output belief degree.On the other hand,when many system characteristics exist,the belief rule combination will explode in BRB-r,and the BRB-r based safety assessment model becomes too complicated to be applied.Thus,in this paper,to balance the complexity and accuracy of the safety assessment model,a new safety assessment model based on BRB-r with considering belief rule reliability is developed for the first time.In the developed model,a new calculation method of the belief rule reliability is proposed with considering both attribute reliability and global ignorance.Moreover,to reduce the influence of uncertainty of expert knowledge,an optimization model for the developed safety assessment model is constructed.A case study of safety assessment of liquefied natural gas(LNG)storage tank is conducted to illustrate the effectiveness of the new developed model.展开更多
Fault diagnosis plays an irreplaceable role in the normal operation of equipment.A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model.Due to the understan...Fault diagnosis plays an irreplaceable role in the normal operation of equipment.A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model.Due to the understandable knowledge expression and transparent reasoning process,the belief rule base(BRB)has extensive applications as an interpretable expert system in fault diagnosis.Optimization is an effective means to weaken the subjectivity of experts in BRB,where the interpretability of BRB may be weakened.Hence,to obtain a credible result,the weakening factors of interpretability in the BRB-based fault diagnosis model are firstly analyzed,which are manifested in deviation from the initial judgement of experts and over-optimization of parameters.For these two factors,three indexes are proposed,namely the consistency index of rules,consistency index of the rule base and over-optimization index,tomeasure the interpretability of the optimizedmodel.Considering both the accuracy and interpretability of amodel,an improved coordinate ascent(I-CA)algorithmis proposed to fine-tune the parameters of the fault diagnosis model based on BRB.In I-CA,the algorithm combined with the advance and retreat method and the golden section method is employed to be one-dimensional search algorithm.Furthermore,the random optimization sequence and adaptive step size are proposed to improve the accuracy of the model.Finally,a case study of fault diagnosis in aerospace relays based on BRB is carried out to verify the effectiveness of the proposed method.展开更多
Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the mil...Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the milling fault detection model.However,due to the complexity of the milling system structure and the uncertainty of the milling failure index,it is often impossible to construct model expert knowledge effectively.Therefore,a milling system fault detection method based on fault tree analysis and hierarchical BRB(FTBRB)is proposed.Firstly,the proposed method uses a fault tree and hierarchical BRB modeling.Through fault tree analysis(FTA),the logical correspondence between FTA and BRB is sorted out.This can effectively embed the FTA mechanism into the BRB expert knowledge base.The hierarchical BRB model is used to solve the problem of excessive indexes and avoid combinatorial explosion.Secondly,evidence reasoning(ER)is used to ensure the transparency of the model reasoning process.Thirdly,the projection covariance matrix adaptation evolutionary strategies(P-CMA-ES)is used to optimize the model.Finally,this paper verifies the validity model and the method’s feasibility techniques for milling data sets.展开更多
To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive ...To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive BRB.The reasoning method based on reduced conjunctive BRB is designed with the help of the conversion technology from conjunctive BRB to disjunctive BRB.Finally,the operational mission effectiveness evaluation is taken as an example to verify the proposed method.The results show that the method proposed in this paper is feasible and effective.展开更多
A liquid launch vehicle is an important carrier in aviation,and its regular operation is essential to maintain space security.In the safety assessment of fluid launch vehicle body structure,it is necessary to ensure t...A liquid launch vehicle is an important carrier in aviation,and its regular operation is essential to maintain space security.In the safety assessment of fluid launch vehicle body structure,it is necessary to ensure that the assessmentmodel can learn self-response rules from various uncertain data and not differently to provide a traceable and interpretable assessment process.Therefore,a belief rule base with interpretability(BRB-i)assessment method of liquid launch vehicle structure safety status combines data and knowledge.Moreover,an innovative whale optimization algorithm with interpretable constraints is proposed.The experiments are carried out based on the liquid launch vehicle safety experiment platform,and the information on the safety status of the liquid launch vehicle is obtained by monitoring the detection indicators under the simulation platform.The MSEs of the proposed model are 3.8000e-03,1.3000e-03,2.1000e-03,and 1.8936e-04 for 25%,45%,65%,and 84%of the training samples,respectively.It can be seen that the proposed model also shows a better ability to handle small sample data.Meanwhile,the belief distribution of the BRB-i model output has a high fitting trend with the belief distribution of the expert knowledge settings,which indicates the interpretability of the BRB-i model.Experimental results show that,compared with other methods,the BRB-i model guarantees the model’s interpretability and the high precision of experimental results.展开更多
Prediction systems are an important aspect of intelligent decisions.In engineering practice,the complex system structure and the external environment cause many uncertain factors in the model,which influence the model...Prediction systems are an important aspect of intelligent decisions.In engineering practice,the complex system structure and the external environment cause many uncertain factors in the model,which influence the modeling accuracy of the model.The belief rule base(BRB)can implement nonlinear modeling and express a variety of uncertain information,including fuzziness,ignorance,randomness,etc.However,the BRB system also has two main problems:Firstly,modeling methods based on expert knowledge make it difficult to guarantee the model’s accuracy.Secondly,interpretability is not considered in the optimization process of current research,resulting in the destruction of the interpretability of BRB.To balance the accuracy and interpretability of the model,a self-growth belief rule basewith interpretability constraints(SBRB-I)is proposed.The reasoning process of the SBRB-I model is based on the evidence reasoning(ER)approach.Moreover,the self-growth learning strategy ensures effective cooperation between the datadriven model and the expert system.A case study showed that the accuracy and interpretability of the model could be guaranteed.The SBRB-I model has good application prospects in prediction systems.展开更多
The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can i...The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models.展开更多
Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and ...Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and wireless data transmission, the data collected by WSNs containnoisy data, leading to unreliable data among the data features extracted duringfault diagnosis. To reduce the influence of unreliable data features on faultdiagnosis accuracy, this paper proposes a belief rule base (BRB) with a selfadaptivequality factor (BRB-SAQF) fault diagnosis model. First, the datafeatures required for WSN node fault diagnosis are extracted. Second, thequality factors of input attributes are introduced and calculated. Third, themodel inference process with an attribute quality factor is designed. Fourth,the projection covariance matrix adaptation evolution strategy (P-CMA-ES)algorithm is used to optimize the model’s initial parameters. Finally, the effectivenessof the proposed model is verified by comparing the commonly usedfault diagnosis methods for WSN nodes with the BRB method consideringstatic attribute reliability (BRB-Sr). The experimental results show that BRBSAQFcan reduce the influence of unreliable data features. The self-adaptivequality factor calculation method is more reasonable and accurate than thestatic attribute reliability method.展开更多
Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting ...Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting gradual and sudden faults. On account of this reason, we propose an online detection solution based on non-analytical model. In this article, the navigation system fault detection model is established based on belief rule base (BRB), where the system measuring residual and its changing rate are used as the inputs of BRB model and the fault detection function as the output. To overcome the drawbacks of current parameter optimization algorithms for BRB and achieve online update, a parameter recursive estimation algorithm is presented for online BRB detection model based on expectation maximization (EM) algorithm. Furthermore, the proposed method is verified by navigation experiment. Experimental results show that the proposed method is able to effectively realize online parameter evaluation in navigation system fault detection model. The output of the detection model can track the fault state very well, and the faults can be diagnosed in real time and accurately. In addition, the detection ability, especially in the probability of false detection, is superior to offline optimization method, and thus the system reliability has great improvement.展开更多
基金supported by the National Natural Science Foundation of China(72471067,72431011,72471238,72231011,62303474,72301286)the Fundamental Research Funds for the Provincial Universities of Zhejiang(GK239909299001-010).
文摘A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and optimized.Then,the key sub-capabilities are identified by quantitatively calculating the contributions made by each sub-capability to the overall capability.Finally,the overall capability is improved by optimizing the identified key sub-capabilities.The theoretical contributions of the proposed approach are as follows.(i)An interpretable capability evaluation model is constructed by employing BRB which can provide complete access to decision-makers.(ii)Key sub-capabilities are identified according to the quantitative contribution analysis results.(iii)Accountable capability improvement is carried out by only optimizing the identified key sub-capabilities.Case study results show that“Surveillance”,“Positioning”,and“Identification”are identified as key sub-capabilities with a summed contribution of 75.55%in an analytical and deducible fashion based on the interpretable capability evaluation model.As a result,the overall capability is improved by optimizing only the identified key sub-capabilities.The overall capability can be greatly improved from 59.20%to 81.80%with a minimum cost of 397.Furthermore,this paper also investigates how optimizing the BRB with more collected data would affect the evaluation results:only optimizing“Surveillance”and“Positioning”can also improve the overall capability to 81.34%with a cost of 370,which thus validates the efficiency of the proposed approach.
基金supported by the Natural Science Foundation of China underGrant 61833016 and 61873293the Shaanxi OutstandingYouth Science Foundation underGrant 2020JC-34the Shaanxi Science and Technology Innovation Team under Grant 2022TD-24.
文摘In industrial production and engineering operations,the health state of complex systems is critical,and predicting it can ensure normal operation.Complex systems have many monitoring indicators,complex coupling structures,non-linear and time-varying characteristics,so it is a challenge to establish a reliable prediction model.The belief rule base(BRB)can fuse observed data and expert knowledge to establish a nonlinear relationship between input and output and has well modeling capabilities.Since each indicator of the complex system can reflect the health state to some extent,the BRB is built based on the causal relationship between system indicators and the health state to achieve the prediction.A health state prediction model based on BRB and long short term memory for complex systems is proposed in this paper.Firstly,the LSTMis introduced to predict the trend of the indicators in the system.Secondly,the Density Peak Clustering(DPC)algorithmis used todetermine referential values of indicators for BRB,which effectively offset the lack of expert knowledge.Then,the predicted values and expert knowledge are fused to construct BRB to predict the health state of the systems by inference.Finally,the effectiveness of the model is verified by a case study of a certain vehicle hydraulic pump.
基金supported in part by the National Natural Science Foundation of China(61833016,61751304,61873273,61702142,61773388)the Key Research and Development Plan of Hainan(ZDYF2019007)Shaanxi Outstanding Youth Science Foundation(2020JC-34)。
文摘Safety assessment is one of important aspects in health management.In safety assessment for practical systems,three problems exist:lack of observation information,high system complexity and environment interference.Belief rule base with attribute reliability(BRB-r)is an expert system that provides a useful way for dealing with these three problems.In BRB-r,once the input information is unreliable,the reliability of belief rule is influenced,which further influences the accuracy of its output belief degree.On the other hand,when many system characteristics exist,the belief rule combination will explode in BRB-r,and the BRB-r based safety assessment model becomes too complicated to be applied.Thus,in this paper,to balance the complexity and accuracy of the safety assessment model,a new safety assessment model based on BRB-r with considering belief rule reliability is developed for the first time.In the developed model,a new calculation method of the belief rule reliability is proposed with considering both attribute reliability and global ignorance.Moreover,to reduce the influence of uncertainty of expert knowledge,an optimization model for the developed safety assessment model is constructed.A case study of safety assessment of liquefied natural gas(LNG)storage tank is conducted to illustrate the effectiveness of the new developed model.
基金supported by the Natural Science Foundation of China (No.61833016)the Shaanxi Outstanding Youth Science Foundation (No.2020JC-34)the Shaanxi Science and Technology Innovation Team (No.2022TD-24).
文摘Fault diagnosis plays an irreplaceable role in the normal operation of equipment.A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model.Due to the understandable knowledge expression and transparent reasoning process,the belief rule base(BRB)has extensive applications as an interpretable expert system in fault diagnosis.Optimization is an effective means to weaken the subjectivity of experts in BRB,where the interpretability of BRB may be weakened.Hence,to obtain a credible result,the weakening factors of interpretability in the BRB-based fault diagnosis model are firstly analyzed,which are manifested in deviation from the initial judgement of experts and over-optimization of parameters.For these two factors,three indexes are proposed,namely the consistency index of rules,consistency index of the rule base and over-optimization index,tomeasure the interpretability of the optimizedmodel.Considering both the accuracy and interpretability of amodel,an improved coordinate ascent(I-CA)algorithmis proposed to fine-tune the parameters of the fault diagnosis model based on BRB.In I-CA,the algorithm combined with the advance and retreat method and the golden section method is employed to be one-dimensional search algorithm.Furthermore,the random optimization sequence and adaptive step size are proposed to improve the accuracy of the model.Finally,a case study of fault diagnosis in aerospace relays based on BRB is carried out to verify the effectiveness of the proposed method.
基金This work was supported in part by the Natural Science Foundation of China under Grant 62203461 and Grant 62203365in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736+3 种基金in part by the Teaching reform project of higher education in Heilongjiang Province under Grant Nos.SJGY20210456 and SJGY20210457in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038in part by the graduate academic innovation project of Harbin Normal University under Grant Nos.HSDSSCX2022-17,HSDSSCX2022-18 andHSDSSCX2022-19in part by the Foreign Expert Project of Heilongjiang Province under Grant No.GZ20220131.
文摘Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the milling fault detection model.However,due to the complexity of the milling system structure and the uncertainty of the milling failure index,it is often impossible to construct model expert knowledge effectively.Therefore,a milling system fault detection method based on fault tree analysis and hierarchical BRB(FTBRB)is proposed.Firstly,the proposed method uses a fault tree and hierarchical BRB modeling.Through fault tree analysis(FTA),the logical correspondence between FTA and BRB is sorted out.This can effectively embed the FTA mechanism into the BRB expert knowledge base.The hierarchical BRB model is used to solve the problem of excessive indexes and avoid combinatorial explosion.Secondly,evidence reasoning(ER)is used to ensure the transparency of the model reasoning process.Thirdly,the projection covariance matrix adaptation evolutionary strategies(P-CMA-ES)is used to optimize the model.Finally,this paper verifies the validity model and the method’s feasibility techniques for milling data sets.
基金supported by the Military Scientific Research Program(41401020301).
文摘To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive BRB.The reasoning method based on reduced conjunctive BRB is designed with the help of the conversion technology from conjunctive BRB to disjunctive BRB.Finally,the operational mission effectiveness evaluation is taken as an example to verify the proposed method.The results show that the method proposed in this paper is feasible and effective.
基金This work was supported in part by the Natural Science Foundation of China under Grant 62203461 and Grant 62203365in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736,in part by the Teaching Reform Project of Higher Education in Heilongjiang Province under Grant Nos.SJGY20210456 and SJGY20210457in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038,and in part by the Graduate Academic Innovation Project of Harbin Normal University under Grant Nos.HSDSSCX2022-17,HSDSSCX2022-18 and HSDSSCX2022-19。
文摘A liquid launch vehicle is an important carrier in aviation,and its regular operation is essential to maintain space security.In the safety assessment of fluid launch vehicle body structure,it is necessary to ensure that the assessmentmodel can learn self-response rules from various uncertain data and not differently to provide a traceable and interpretable assessment process.Therefore,a belief rule base with interpretability(BRB-i)assessment method of liquid launch vehicle structure safety status combines data and knowledge.Moreover,an innovative whale optimization algorithm with interpretable constraints is proposed.The experiments are carried out based on the liquid launch vehicle safety experiment platform,and the information on the safety status of the liquid launch vehicle is obtained by monitoring the detection indicators under the simulation platform.The MSEs of the proposed model are 3.8000e-03,1.3000e-03,2.1000e-03,and 1.8936e-04 for 25%,45%,65%,and 84%of the training samples,respectively.It can be seen that the proposed model also shows a better ability to handle small sample data.Meanwhile,the belief distribution of the BRB-i model output has a high fitting trend with the belief distribution of the expert knowledge settings,which indicates the interpretability of the BRB-i model.Experimental results show that,compared with other methods,the BRB-i model guarantees the model’s interpretability and the high precision of experimental results.
基金This work was supported in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038+2 种基金in part by the innovation practice project of college students in Heilongjiang Province under Grant Nos.202010231009,202110231024,and 202110231155in part by the basic scientific research business expenses scientific research projects of provincial universities in Heilongjiang Province Grant Nos.XJGZ2021001in part by the Education and teaching reform program of 2021 in Heilongjiang Province under Grant No.SJGY20210457.
文摘Prediction systems are an important aspect of intelligent decisions.In engineering practice,the complex system structure and the external environment cause many uncertain factors in the model,which influence the modeling accuracy of the model.The belief rule base(BRB)can implement nonlinear modeling and express a variety of uncertain information,including fuzziness,ignorance,randomness,etc.However,the BRB system also has two main problems:Firstly,modeling methods based on expert knowledge make it difficult to guarantee the model’s accuracy.Secondly,interpretability is not considered in the optimization process of current research,resulting in the destruction of the interpretability of BRB.To balance the accuracy and interpretability of the model,a self-growth belief rule basewith interpretability constraints(SBRB-I)is proposed.The reasoning process of the SBRB-I model is based on the evidence reasoning(ER)approach.Moreover,the self-growth learning strategy ensures effective cooperation between the datadriven model and the expert system.A case study showed that the accuracy and interpretability of the model could be guaranteed.The SBRB-I model has good application prospects in prediction systems.
基金This work is supported in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736in part by the Teaching reform project of higher education in Heilongjiang Province under Grant No.SJGY20210456in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038.
文摘The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models.
基金supported by the Postdoctoral Science Foundation of China under Grant No.2020M683736partly by the Teaching reform project of higher education in Heilongjiang Province under Grant No.SJGY20210456+2 种基金partly by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038partly by the Haiyan foundation of Harbin Medical University Cancer Hospital under Grant No.JJMS2021-28partly by the graduate academic innovation project of Harbin Normal University under Grant Nos.HSDSSCX2022-17,HSDSSCX2022-18 and HSDSSCX2022-19.
文摘Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and wireless data transmission, the data collected by WSNs containnoisy data, leading to unreliable data among the data features extracted duringfault diagnosis. To reduce the influence of unreliable data features on faultdiagnosis accuracy, this paper proposes a belief rule base (BRB) with a selfadaptivequality factor (BRB-SAQF) fault diagnosis model. First, the datafeatures required for WSN node fault diagnosis are extracted. Second, thequality factors of input attributes are introduced and calculated. Third, themodel inference process with an attribute quality factor is designed. Fourth,the projection covariance matrix adaptation evolution strategy (P-CMA-ES)algorithm is used to optimize the model’s initial parameters. Finally, the effectivenessof the proposed model is verified by comparing the commonly usedfault diagnosis methods for WSN nodes with the BRB method consideringstatic attribute reliability (BRB-Sr). The experimental results show that BRBSAQFcan reduce the influence of unreliable data features. The self-adaptivequality factor calculation method is more reasonable and accurate than thestatic attribute reliability method.
基金the National High-tech Research and Development Program of China(No.2011AA7053016)National Natural Science Foundation of China(No.61174030)
文摘Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting gradual and sudden faults. On account of this reason, we propose an online detection solution based on non-analytical model. In this article, the navigation system fault detection model is established based on belief rule base (BRB), where the system measuring residual and its changing rate are used as the inputs of BRB model and the fault detection function as the output. To overcome the drawbacks of current parameter optimization algorithms for BRB and achieve online update, a parameter recursive estimation algorithm is presented for online BRB detection model based on expectation maximization (EM) algorithm. Furthermore, the proposed method is verified by navigation experiment. Experimental results show that the proposed method is able to effectively realize online parameter evaluation in navigation system fault detection model. The output of the detection model can track the fault state very well, and the faults can be diagnosed in real time and accurately. In addition, the detection ability, especially in the probability of false detection, is superior to offline optimization method, and thus the system reliability has great improvement.