This study determines the geochemical and depositional environment analysis of the sediments of the Sohnari Member of the Laki Formation, Northern Kirthar Fold Belt of Pakistan. The Energy-Dispersive-X-Ray Spectroscop...This study determines the geochemical and depositional environment analysis of the sediments of the Sohnari Member of the Laki Formation, Northern Kirthar Fold Belt of Pakistan. The Energy-Dispersive-X-Ray Spectroscopy (EDS) technique is used for the detection of major elements and the effects of shifting depositional climatic conditions of six representative samples which were acquired from the Sohnari Member of the Laki Formation at Lakhra area, Sindh, Pakistan. The sedimentological studies clarify that the sediments the Sonahri Member are relatively immature and most migrated in clastic mode. The availability of Silica shows that the Member was formed due to biochemical precipitation and detrital mode and was deposited at a fast rate of sediment deposition under the fluvio-deltaic depositional system. This is also deduced that the rapid rate of sediment deposition might be created a reducing atmosphere and allowing for the mineralization of sulphur.展开更多
文摘This study determines the geochemical and depositional environment analysis of the sediments of the Sohnari Member of the Laki Formation, Northern Kirthar Fold Belt of Pakistan. The Energy-Dispersive-X-Ray Spectroscopy (EDS) technique is used for the detection of major elements and the effects of shifting depositional climatic conditions of six representative samples which were acquired from the Sohnari Member of the Laki Formation at Lakhra area, Sindh, Pakistan. The sedimentological studies clarify that the sediments the Sonahri Member are relatively immature and most migrated in clastic mode. The availability of Silica shows that the Member was formed due to biochemical precipitation and detrital mode and was deposited at a fast rate of sediment deposition under the fluvio-deltaic depositional system. This is also deduced that the rapid rate of sediment deposition might be created a reducing atmosphere and allowing for the mineralization of sulphur.