Scaling is an important measure of multi-scale fluctuation systems. Turbulence as the most remarkable multi-scale system possesses scaling over a wide range of scales. She-Leveque (SL) hierarchical symmetry, since i...Scaling is an important measure of multi-scale fluctuation systems. Turbulence as the most remarkable multi-scale system possesses scaling over a wide range of scales. She-Leveque (SL) hierarchical symmetry, since its publication in 1994, has received wide attention. A number of experimental, numerical and theoretical work have been devoted to its verification, extension, and modification. Application to the understanding of magnetohydrodynamic turbulence, motions of cosmic baryon fluids, cosmological supersonic turbulence, natural image, spiral turbulent patterns, DNA anomalous composition, human heart variability are just a few among the most successful examples. A number of modified scaling laws have been derived in the framework of the hierarchical symmetry, and the SL model parameters are found to reveal both the organizational order of the whole system and the properties of the most significant fluctuation structures. A partial set of work related to these studies are reviewed. Particular emphasis is placed on the nature of the hierarchical symmetry. It is suggested that the SL hierarchical symmetry is a new form of the self-organization principle for multi-scale fluctuation systems, and can be employed as a standard analysis tool in the general multi-scale methodology. It is further suggested that the SL hierarchical symmetry implies the existence of a turbulence ensemble. It is speculated that the search for defining the turbulence ensemble might open a new way for deriving statistical closure equations for turbulence and other multi-scale fluctuation systems.展开更多
This article reports recent developments and advances in the simulation of the CO2-formation fluid displacement behaviour at the pore scale of subsurface porous media. Roughly, there are three effective visualization ...This article reports recent developments and advances in the simulation of the CO2-formation fluid displacement behaviour at the pore scale of subsurface porous media. Roughly, there are three effective visualization approaches to detect and observe the CO2-formation fluid displacement mechanism at the micro-scale, namely, magnetic resonance imaging, X-ray computed tomography and fabricated micromodels, but they are not capable of investigating the dis- placement process at the nano-scale. Though a lab-on-chip approach for the direct visualization of the fluid flow behaviour in nanoscale channels has been developed using an advanced epi-fluorescence microscopy method combined with a nanofluidic chip, it is still a qualitative analysis method. The lattice Boltzmann method (LBM) can simulate the CO2 displacement processes in a two-dimensional or three-dimensional (3D) pore structure, but until now, the CO2 displace- ment mechanisms had not been thoroughly investigated and the 3D pore structure of real rock had not been directly taken into account in the simulation of the CO2 displacement process. The status of research on the applications of CO2 displacement to enhance shale gas recovery is also analyzed in this paper. The coupling of molecular dynamics and LBM in tandem is proposed to simulate the CO2-shale gas displacement process based on the 3D digital model of shale obtained from focused ion beams and scanning electron microscopy.展开更多
Mesocyclops Leukarti of zooplankton propagates excessively in eutrophic water body and it can not be effectively inactivated by the conventional process in drinking waterworks for its special surface structure. In thi...Mesocyclops Leukarti of zooplankton propagates excessively in eutrophic water body and it can not be effectively inactivated by the conventional process in drinking waterworks for its special surface structure. In this paper, a study of removal efficiency on Mesocyclops Leukarti with chlorine dioxide in a drinking waterworks was performed. Bench scale results showed that chlorine dioxide is more effective against Mesocyclops Leukarti. And Mesocyclops Leukarti could be effectively removed from water by 1.0 mg/L chlorine dioxide preoxidation cooperated with the conventional process during the full scale study. The chlorite, by.product of prechiorine dioxide, was constant at 0.45 mg/L after filtration, which was lower than the critical value of the USEPA. GC-MS examination and Ames test showed that the quantity of organics and the mutngenicity in the water treated by chlorine dioxide is obviously less than that of prechlorination.展开更多
This paper deals with the problem of decentralized robustcontrol for a class of interconnected uncertain systemswith state delays.The parameter uncertainties are un-known but norm-bounded.A new sufficient condition is...This paper deals with the problem of decentralized robustcontrol for a class of interconnected uncertain systemswith state delays.The parameter uncertainties are un-known but norm-bounded.A new sufficient condition isobtained for each subsystem and overall system to be sta-bilizable via linear memoryless state feedback robust de-centralized controllers.The results depend on the size of the delays and are given in terms of linear matrix ine-qualities,so they are less conservative than those of delay-independent.Moreover,matching condition is not a necessary condition.Finally,an example is presented to illustrative the effectiveness of the proposed method.展开更多
Based on surveying the conditions of large -scale farms and commercial manure in the each county of Yangzhou city, the situations and problems for utilization of livestock manure resources were grasped. After an analy...Based on surveying the conditions of large -scale farms and commercial manure in the each county of Yangzhou city, the situations and problems for utilization of livestock manure resources were grasped. After an analysis of the potential value of livestock manure, the suggestion and strategy for utilization of livestock manure resources were proposed based on the actual conditions in Yangzhou city.展开更多
Based on the remote sensing images of algae, the present work analyzes the horizontal distribution characteristics of algal blooms in Chaohu Lake, China, which also reveals the frequency of algal blooms under differen...Based on the remote sensing images of algae, the present work analyzes the horizontal distribution characteristics of algal blooms in Chaohu Lake, China, which also reveals the frequency of algal blooms under different wind directions. Further, an unstructured-grid, three-dimensional finite-volume coastal ocean model (FVCOM) is applied to investigate the wind-induced currents and the transport pro- cess to explain the reason why algal blooms occur at the detected places. We first deduce the primary distribution of biomass from overlaid satellite images, and explain the formation mechanism by analyzing the pollution sources, and simulating the flow field and transportation process under prevailing wind over Chaohu Lake. And then, we consider the adjustment action of the wind on the corresponding day and develop a two-time scale approach to describe the whole formation process of algae horizontal distribution in Chaohu Lake. That is, on the longer time scale, i.e., during bloom season, prevailing wind determines the primary distribution of biomass by inducing the characteristic flow field; on the shorter time scale, i.e., on the day when bloom occurs, the wind force adjusts the primary distribution of biomass to form the final distribution of algal bloom.展开更多
In this paper,the nonlinear dynamic behavior of a string-beam coupled system subjected to external,parametric and tuned excitations is presented.The governing equations of motion are obtained for the nonlinear transve...In this paper,the nonlinear dynamic behavior of a string-beam coupled system subjected to external,parametric and tuned excitations is presented.The governing equations of motion are obtained for the nonlinear transverse vibrations of the string-beam coupled system which are described by a set of ordinary differential equations with two degrees of freedom.The case of 1:1 internal resonance between the modes of the beam and string,and the primary and combined resonance for the beam is considered.The method of multiple scales is utilized to analyze the nonlinear responses of the string-beam coupled system and obtain approximate solutions up to and including the second-order approximations.All resonance cases are extracted and investigated.Stability of the system is studied using frequency response equations and the phase-plane method.Numerical solutions are carried out and the results are presented graphically and discussed.The effects of the different parameters on both response and stability of the system are investigated.The reported results are compared to the available published work.展开更多
At present, coal is mainly consumed as fuel. In fact, coal is also a kind of precious raw material in chemical industry on the premise that some harmful minerals should be removed from coal. The paper presents the res...At present, coal is mainly consumed as fuel. In fact, coal is also a kind of precious raw material in chemical industry on the premise that some harmful minerals should be removed from coal. The paper presents the results of the research on producing low ash (<2%) coal with triboelectrostatic separator used for producing high-grade active carbon. The test is conducted in bench-scale system, whose capacity is 30~100 kg/h. The results indicate that: 1) the ash content of clean coal increases with the increase of solid content of feedstock, on the contrary, the yield of clean coal is declining; 2) a high velocity may result in a good separation efficiency; 3) for the same solid content, the reunion caused by intermolecular force makes the separation efficiency drop down when the ultra-fine coal is separated; 4) the separation efficiency is improved with the increase of electric field intensity, but there is a good optimized match between the electric field intensity and yield of clean coal; 5) a low rank coal is easy-to-wash in triboelectrostatic separation process; 6) the yield of clean coal can be enhanced and the ash decreased through adapting optimized conditions according to various coals.展开更多
The formation of mineral scale is a complex problem during the oilfield operations. Scale inhibitors are widely used to prevent salt precipitation within reservoirs, in downhole equipment, and in production facilities...The formation of mineral scale is a complex problem during the oilfield operations. Scale inhibitors are widely used to prevent salt precipitation within reservoirs, in downhole equipment, and in production facilities. The scale inhibitors not only must have high effectiveness to prevent scale formation, but also have good adsorption- desorption characteristics, which determine the operation duration of the scale inhibitors. This work is focused on the development of a new scale inhibitor for preventing cal- cium carbonate formation in three different synthetic for- mation waters. Scale inhibition efficiency, optical density of the solution, induction time of calcium carbonate for- mation, corrosion activity, and adsorption-desorption ability were investigated for the developed scale inhibitor. The optimum concentration of hydrochloric acid in the inhibitor was determined by surface tension measurement on the boundary layer between oil and the aqueous scale inhibitor solution. The results show that the optimum mass percentage of 5 % hydrochloric acid solution in the inhi- bitor was in the range of 8 % to 10 %. The new scale inhibitor had high efficiency at a concentration of 30 mg/L. The results indicate that the induction period for calcium carbonate nucleation in the presence of the new inhibitor was about 3.5 times longer than the value in the absence of the inhibitors. During the desorption process at reservoir conditions, the number of pore volumes injected into the carbonate core for the developed inhibitor was significantly greater than the volume of a tested industrial inhibitor, showing better adsorption/desorption capacity.展开更多
The Bohai Bay Basin is a typical oil-prone basin, in which natural gas geological reserves have a small proportion. In this basin, the gas source rock is largely medium-deep lake mudstone with oil-prone type Ⅱ2-Ⅱ1 k...The Bohai Bay Basin is a typical oil-prone basin, in which natural gas geological reserves have a small proportion. In this basin, the gas source rock is largely medium-deep lake mudstone with oil-prone type Ⅱ2-Ⅱ1 kerogens, and natural gas preservation conditions are poor due to active late tectonic movements. The formation conditions of large natural gas fields in the Bohai Bay Basin have been elusive. Based on the exploration results of Bohai Bay Basin and comparison with large gas fields in China and abroad, the formation conditions of conventional large-scale natural gas reservoirs in the Bohai Bay Basin were examined from accumulation dynamics, structure and sedimentation. The results show that the formation conditions of conventional large natural gas reservoirs in Bohai Bay Basin mainly include one core element and two key elements. The core factor is the strong sealing of Paleogene "quilt-like" overpressure mudstone. The two key factors include the rapid maturation and high-intensity gas generation of source rock in the late stage and large scale reservoir. On this basis, large-scale nature gas accumulation models in the Bohai Bay Basin have been worked out, including regional overpressure mudstone enriching model, local overpressure mudstone depleting model, sand-rich sedimentary subsag depleting model and late strongly-developed fault depleting model. It is found that Bozhong sag, northern Liaozhong sag and Banqiao sag have favorable conditions for the formation of large-scale natural gas reservoirs, and are worth exploring. The study results have important guidance for exploration of large scale natural gas reservoirs in the Bohai Bay Basin.展开更多
基金the National Natural Science Foundation(90716008)MOST 973 project (2009CB724100)
文摘Scaling is an important measure of multi-scale fluctuation systems. Turbulence as the most remarkable multi-scale system possesses scaling over a wide range of scales. She-Leveque (SL) hierarchical symmetry, since its publication in 1994, has received wide attention. A number of experimental, numerical and theoretical work have been devoted to its verification, extension, and modification. Application to the understanding of magnetohydrodynamic turbulence, motions of cosmic baryon fluids, cosmological supersonic turbulence, natural image, spiral turbulent patterns, DNA anomalous composition, human heart variability are just a few among the most successful examples. A number of modified scaling laws have been derived in the framework of the hierarchical symmetry, and the SL model parameters are found to reveal both the organizational order of the whole system and the properties of the most significant fluctuation structures. A partial set of work related to these studies are reviewed. Particular emphasis is placed on the nature of the hierarchical symmetry. It is suggested that the SL hierarchical symmetry is a new form of the self-organization principle for multi-scale fluctuation systems, and can be employed as a standard analysis tool in the general multi-scale methodology. It is further suggested that the SL hierarchical symmetry implies the existence of a turbulence ensemble. It is speculated that the search for defining the turbulence ensemble might open a new way for deriving statistical closure equations for turbulence and other multi-scale fluctuation systems.
基金The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant Nos. 51374213 and 51674251), the State Key Research Development Program of China (Grant No. 2016YFC0600705), the National Natural Science Fund for Distinguished Young Scholars of China (Grant No. 51125017), the Fund for Innovative Research and Development Group Program of Jiangsu Province (Grant No. 2014- 27), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51421003), and the Priority Academic Program Development of the Jiangsu Higher Education Institutions (PAPD 2014).
文摘This article reports recent developments and advances in the simulation of the CO2-formation fluid displacement behaviour at the pore scale of subsurface porous media. Roughly, there are three effective visualization approaches to detect and observe the CO2-formation fluid displacement mechanism at the micro-scale, namely, magnetic resonance imaging, X-ray computed tomography and fabricated micromodels, but they are not capable of investigating the dis- placement process at the nano-scale. Though a lab-on-chip approach for the direct visualization of the fluid flow behaviour in nanoscale channels has been developed using an advanced epi-fluorescence microscopy method combined with a nanofluidic chip, it is still a qualitative analysis method. The lattice Boltzmann method (LBM) can simulate the CO2 displacement processes in a two-dimensional or three-dimensional (3D) pore structure, but until now, the CO2 displace- ment mechanisms had not been thoroughly investigated and the 3D pore structure of real rock had not been directly taken into account in the simulation of the CO2 displacement process. The status of research on the applications of CO2 displacement to enhance shale gas recovery is also analyzed in this paper. The coupling of molecular dynamics and LBM in tandem is proposed to simulate the CO2-shale gas displacement process based on the 3D digital model of shale obtained from focused ion beams and scanning electron microscopy.
基金Supported by Nature Science Foundation of Heilongjiang Province ( No. E200510) and Education Affliction Program of HeilongjiangProvince (No.10551093)
文摘Mesocyclops Leukarti of zooplankton propagates excessively in eutrophic water body and it can not be effectively inactivated by the conventional process in drinking waterworks for its special surface structure. In this paper, a study of removal efficiency on Mesocyclops Leukarti with chlorine dioxide in a drinking waterworks was performed. Bench scale results showed that chlorine dioxide is more effective against Mesocyclops Leukarti. And Mesocyclops Leukarti could be effectively removed from water by 1.0 mg/L chlorine dioxide preoxidation cooperated with the conventional process during the full scale study. The chlorite, by.product of prechiorine dioxide, was constant at 0.45 mg/L after filtration, which was lower than the critical value of the USEPA. GC-MS examination and Ames test showed that the quantity of organics and the mutngenicity in the water treated by chlorine dioxide is obviously less than that of prechlorination.
基金China Postdoctotral Foundation and Shanghai Postdoctoral Foundation
文摘This paper deals with the problem of decentralized robustcontrol for a class of interconnected uncertain systemswith state delays.The parameter uncertainties are un-known but norm-bounded.A new sufficient condition isobtained for each subsystem and overall system to be sta-bilizable via linear memoryless state feedback robust de-centralized controllers.The results depend on the size of the delays and are given in terms of linear matrix ine-qualities,so they are less conservative than those of delay-independent.Moreover,matching condition is not a necessary condition.Finally,an example is presented to illustrative the effectiveness of the proposed method.
基金Cultivated Land Quality Monitoring Special Funds in Jiangsu Province,Jiangsu Agricultural Three Engineerings(sx(2010)229)Yangzhou Agricultural Science and Technology Project(YZ2010059)Aid
文摘Based on surveying the conditions of large -scale farms and commercial manure in the each county of Yangzhou city, the situations and problems for utilization of livestock manure resources were grasped. After an analysis of the potential value of livestock manure, the suggestion and strategy for utilization of livestock manure resources were proposed based on the actual conditions in Yangzhou city.
基金supported by the Hundred Talents Program of Chinese Academy of Sciencesthe National Natural Science Fundation of China for Distinguished Young Scholar(10825211)
文摘Based on the remote sensing images of algae, the present work analyzes the horizontal distribution characteristics of algal blooms in Chaohu Lake, China, which also reveals the frequency of algal blooms under different wind directions. Further, an unstructured-grid, three-dimensional finite-volume coastal ocean model (FVCOM) is applied to investigate the wind-induced currents and the transport pro- cess to explain the reason why algal blooms occur at the detected places. We first deduce the primary distribution of biomass from overlaid satellite images, and explain the formation mechanism by analyzing the pollution sources, and simulating the flow field and transportation process under prevailing wind over Chaohu Lake. And then, we consider the adjustment action of the wind on the corresponding day and develop a two-time scale approach to describe the whole formation process of algae horizontal distribution in Chaohu Lake. That is, on the longer time scale, i.e., during bloom season, prevailing wind determines the primary distribution of biomass by inducing the characteristic flow field; on the shorter time scale, i.e., on the day when bloom occurs, the wind force adjusts the primary distribution of biomass to form the final distribution of algal bloom.
文摘In this paper,the nonlinear dynamic behavior of a string-beam coupled system subjected to external,parametric and tuned excitations is presented.The governing equations of motion are obtained for the nonlinear transverse vibrations of the string-beam coupled system which are described by a set of ordinary differential equations with two degrees of freedom.The case of 1:1 internal resonance between the modes of the beam and string,and the primary and combined resonance for the beam is considered.The method of multiple scales is utilized to analyze the nonlinear responses of the string-beam coupled system and obtain approximate solutions up to and including the second-order approximations.All resonance cases are extracted and investigated.Stability of the system is studied using frequency response equations and the phase-plane method.Numerical solutions are carried out and the results are presented graphically and discussed.The effects of the different parameters on both response and stability of the system are investigated.The reported results are compared to the available published work.
基金National Development Programs of Major Basic Research Project(G19990 2 2 2 0 5 -0 3 )
文摘At present, coal is mainly consumed as fuel. In fact, coal is also a kind of precious raw material in chemical industry on the premise that some harmful minerals should be removed from coal. The paper presents the results of the research on producing low ash (<2%) coal with triboelectrostatic separator used for producing high-grade active carbon. The test is conducted in bench-scale system, whose capacity is 30~100 kg/h. The results indicate that: 1) the ash content of clean coal increases with the increase of solid content of feedstock, on the contrary, the yield of clean coal is declining; 2) a high velocity may result in a good separation efficiency; 3) for the same solid content, the reunion caused by intermolecular force makes the separation efficiency drop down when the ultra-fine coal is separated; 4) the separation efficiency is improved with the increase of electric field intensity, but there is a good optimized match between the electric field intensity and yield of clean coal; 5) a low rank coal is easy-to-wash in triboelectrostatic separation process; 6) the yield of clean coal can be enhanced and the ash decreased through adapting optimized conditions according to various coals.
文摘The formation of mineral scale is a complex problem during the oilfield operations. Scale inhibitors are widely used to prevent salt precipitation within reservoirs, in downhole equipment, and in production facilities. The scale inhibitors not only must have high effectiveness to prevent scale formation, but also have good adsorption- desorption characteristics, which determine the operation duration of the scale inhibitors. This work is focused on the development of a new scale inhibitor for preventing cal- cium carbonate formation in three different synthetic for- mation waters. Scale inhibition efficiency, optical density of the solution, induction time of calcium carbonate for- mation, corrosion activity, and adsorption-desorption ability were investigated for the developed scale inhibitor. The optimum concentration of hydrochloric acid in the inhibitor was determined by surface tension measurement on the boundary layer between oil and the aqueous scale inhibitor solution. The results show that the optimum mass percentage of 5 % hydrochloric acid solution in the inhi- bitor was in the range of 8 % to 10 %. The new scale inhibitor had high efficiency at a concentration of 30 mg/L. The results indicate that the induction period for calcium carbonate nucleation in the presence of the new inhibitor was about 3.5 times longer than the value in the absence of the inhibitors. During the desorption process at reservoir conditions, the number of pore volumes injected into the carbonate core for the developed inhibitor was significantly greater than the volume of a tested industrial inhibitor, showing better adsorption/desorption capacity.
基金Supported by the China National Science and Technology Major Project (2016ZX05024-003)
文摘The Bohai Bay Basin is a typical oil-prone basin, in which natural gas geological reserves have a small proportion. In this basin, the gas source rock is largely medium-deep lake mudstone with oil-prone type Ⅱ2-Ⅱ1 kerogens, and natural gas preservation conditions are poor due to active late tectonic movements. The formation conditions of large natural gas fields in the Bohai Bay Basin have been elusive. Based on the exploration results of Bohai Bay Basin and comparison with large gas fields in China and abroad, the formation conditions of conventional large-scale natural gas reservoirs in the Bohai Bay Basin were examined from accumulation dynamics, structure and sedimentation. The results show that the formation conditions of conventional large natural gas reservoirs in Bohai Bay Basin mainly include one core element and two key elements. The core factor is the strong sealing of Paleogene "quilt-like" overpressure mudstone. The two key factors include the rapid maturation and high-intensity gas generation of source rock in the late stage and large scale reservoir. On this basis, large-scale nature gas accumulation models in the Bohai Bay Basin have been worked out, including regional overpressure mudstone enriching model, local overpressure mudstone depleting model, sand-rich sedimentary subsag depleting model and late strongly-developed fault depleting model. It is found that Bozhong sag, northern Liaozhong sag and Banqiao sag have favorable conditions for the formation of large-scale natural gas reservoirs, and are worth exploring. The study results have important guidance for exploration of large scale natural gas reservoirs in the Bohai Bay Basin.