期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Significance-based optimization of processing parameters for thin-walled aluminum alloy tube NC bending with small bending radius 被引量:13
1
作者 XU Jie YANG He +1 位作者 LI Heng ZHAN Mei 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期147-156,共10页
Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of... Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of the parameters was proposed based on the finite element (FE) simulation, and the significance analysis of the processing parameters on the forming quality in terms of the maximum wall thinning ratio and the maximum cross section distortion degree was implemented using the fractional factorial design. The optimum value of the significant parameter, the clearance between the tube and the wiper die, was obtained, and the values of the other parameters, including the friction coefficients and the clearances between the tube and the dies, the mandrel extension length and the boost velocity were estimated. The results are applied to aluminum alloy tube NC bending d50 mm×1 mm×75 mm and d70 mm×1.5 mm×105 mm (initial tube outside diameter D0 × initial tube wall thickness t0 × bending radius R), and qualified tubes are produced. 展开更多
关键词 thin-walled aluminum alloy tube OPTIMIZATION finite element (FE) numerical control bending processing parameters significance analysis small bending radius
下载PDF
Influence of deformation zone length on bending radius of SS304 tubes with small diameters manufactured via free bending-based active motion
2
作者 Shenghan HU Cheng CHENG +4 位作者 Ali Abd EL-ATY Shuo ZHENG Xunzhong GUO Chunmei LIU Jie TAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第6期420-434,共15页
In three and six-axis free-bending equipment,the deformation zone length(A)is a fixed mechanical structure parameter modified when the relevant structure is redesigned and manufactured.In this study,a six degree of fr... In three and six-axis free-bending equipment,the deformation zone length(A)is a fixed mechanical structure parameter modified when the relevant structure is redesigned and manufactured.In this study,a six degree of freedom(6-DOF)parallel mechanism was used as the control mechanism of the bending die,and a new method of changing the deformation zone length(A)was proposed.Firstly,an idealized geometric model of free bending-based active motion was established.Then,the influence of the deformation zone length(A)on the bending moment and the bending radius of the tube was analyzed.In addition,the finite element simulation and a kinematic model of free bending-based active motion controlled by the 6-DOF parallel mechanism were established,and bending processes of the SS304 tube with different deformation zone lengths were investigated.Afterwards,the impact of the deformation zone length(A)on the bending radius,bending moment,wall thickness,and motion of the parallel mechanism were analyzed.Finally,experiments were carried out on the free-bending equipment based on the 6-DOF parallel mechanism.Experiments verified the rules in the theoretical analysis,finite element simulation,and kinematic simulation. 展开更多
关键词 bending radius Deformation zone length 6-DOF parallel mechanism Free bending-based active motion Small diameter tube
原文传递
Discussion on New Evaluation Technology of Non-Metallic Composite Continuous Pipe for Oil and Gas Field 被引量:1
3
作者 Xuehua Cai Xiaodong Shao +3 位作者 Zhao Zhang Han Ding Guoquan Qi Houbu Li 《Journal of Materials Science and Chemical Engineering》 2021年第12期1-6,共6页
<div style="text-align:justify;"> In view of the serious lack and lag of the test and evaluation technology of non-metallic composite continuous pipe, and focusing on the characteristics of the applica... <div style="text-align:justify;"> In view of the serious lack and lag of the test and evaluation technology of non-metallic composite continuous pipe, and focusing on the characteristics of the application of non-metallic composite continuous pipe in oil field, this paper discusses a series of new full-scale test and evaluation technologies for accurately evaluating the product quality and practical application performance of non-metallic composite continuous pipe, which effectively solves the major technical problem that the new products of non-metallic pipe cannot be accurately evaluated. Based on the characteristics of the application of non-metallic composite continuous pipe in oil field, a series of new full-scale test evaluation technologies which can accurately evaluate the product quality and practical application performance of non-metallic pipe are designed through a large number of tests. The test and evaluation technology can accurately evaluate the key performance of high and low pressure cycle, high and low temperature cycle, gas permeability resistance, minimum bending radius etc. It provides a scientific evaluation basis for the standardized application of non-metallic continuous pipe and a reliable quality control method for the selection of products in oil field. </div> 展开更多
关键词 Non Metallic Composite Continuous Pipe Full-Size High and Low Temperature Cycle Minimum bending radius
下载PDF
Research on spring-back behavior of high strength steel sheets
4
作者 Zhang Junping Fang Gang +1 位作者 Ma Mingtu Jin Qingsheng 《Engineering Sciences》 EI 2014年第5期54-58,共5页
To investigate the spring-back behavior of dual-phase (DP) steel, V-shape spring-back experiments with different bending angles, relative bending radii and blank holding forces were carried out in this paper. It is ... To investigate the spring-back behavior of dual-phase (DP) steel, V-shape spring-back experiments with different bending angles, relative bending radii and blank holding forces were carried out in this paper. It is concluded that with the increase of V-shape angle or blank holding force, the spring-back of DP steel sheets decreases; while raising fiIlet radius of punch, which has the most apparent effects on spring-back, advances spring-back angle. Among DP590, DP780 and DP980, higher strength yields more notable spring-back due to larger elastic deformation. The difference of spring-back among these materials is relevant with the microstructure and mechanical properties. The total elastic deformation approximately equals the ratio of the strength corresponding to the applied load to the modulus of elasticity. 展开更多
关键词 SPRING-BACK V-shape bending blank holding force relative bending radius
下载PDF
Deformation Behavior of Medium-strength TA18 High-pressure Tubes During NC Bending with Different Bending Radii 被引量:16
5
作者 JIANG Zhiqiang ZHAN Mei +2 位作者 YANG He XU Xudong LI Guangjun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第5期657-664,共8页
To improve the forming quality and forming limit of the numerical control (NC) bending of high-pressure titanium alloy tubes, in this study, using three-dimensional (3D) finite element method, deformation behavior... To improve the forming quality and forming limit of the numerical control (NC) bending of high-pressure titanium alloy tubes, in this study, using three-dimensional (3D) finite element method, deformation behavior of medium-strength TA 18 high-pressure tubes during NC bending with different bending radii is investigated. The results show that the cross-sectional deformation and the wall thickness variation during NC bending of TA18 tubes using a small bending radius (less than 2 times of tube outside diameter) are clearly different from that using a normal bending radius (between 2 and 4 times of tube outside diameter). For bending with a normal bending radius, with or without a mandrel, the distribution of the flattening in the bending area resembles a platform and an asymmetric parabola, respectively. For bending with a small bending radius, with or without a mandrel, the flattening both distributes like a parabola, but the former has a stable peak which deflects toward the initial bending section, and the latter has a more pronounced peak with a bending angle and deflects slightly toward the bending section. The wall thickness variations with a normal bending radius, with and without a mandrel, both resemble a platform when the bending angle exceeds a certain angle. For the bending with a small radius, the distribution of the wall thickness variation without a mandrel follows an approximate parabola which increases in value as the bending angle increases. If a mandrel is used, the thickening ratio increases from the initial bending section to the bending section. 展开更多
关键词 titanium alloy tubes deformation behaviors numerical control bending finite element method normal bending radius small bending radius
原文传递
Bending characteristics of dual-hole PM-PCF based on LP_(01) and LP_(11) modal interference
6
作者 郭璇 刘丰 +3 位作者 高梦圆 谈爱玲 付兴虎 毕卫红 《Optoelectronics Letters》 EI 2016年第2期136-139,共4页
The bending characteristics of dual-hole polarization maintaining photonic crystal fiber(PM-PCF) are demonstrated in this paper. The modal interference is induced by the LP_(01) mode and LP_(11) mode propagating in a ... The bending characteristics of dual-hole polarization maintaining photonic crystal fiber(PM-PCF) are demonstrated in this paper. The modal interference is induced by the LP_(01) mode and LP_(11) mode propagating in a single PM-PCF with the same polarization direction. Simulation results demonstrate that the bending radius induces the phase difference between LP_(01) mode and LP_(11) mode, which leads to the change of light interference intensity on the fiber output facet. The relationship between bending radius and normalized interference intensity with three different bending angles is discussed, where the bending angle is defined as the angle between hole axis and the x axis. The bending sensitivity is obtained to be about-188.78/m around the bending radius of 1.5 cm with the bending angle of 90°. The bending characteristics can contribute for online bending detection in widespread areas. 展开更多
关键词 bending normalized photonic radius facet modal maintaining widespread silica spots
原文传递
Multilayer-core fiber with a large mode area and a low bending loss
7
作者 姜有超 任国斌 +6 位作者 廉玉东 刘昱 刘怀清 李海粟 任文华 简伟 简水生 《Chinese Optics Letters》 SCIE EI CAS CSCD 2016年第12期36-40,共5页
We present a single-mode multilayer-core fiber with a large mode area(LMA) and a low bending loss in this Letter. A low equivalent core-cladding refractive index difference is achieved by exploiting the multilayer s... We present a single-mode multilayer-core fiber with a large mode area(LMA) and a low bending loss in this Letter. A low equivalent core-cladding refractive index difference is achieved by exploiting the multilayer structure. The multilayer structure has a better bending performance than a traditional step-index core and this structure also contributes to realizing different curved refractive index profiles that have a better bending performance. An index trench is also introduced to dramatically reduce the bending loss. The experimental results show that, at a wavelength of 1550 nm, the mode area of the fabricated fiber is about 215.5 μm^2 and the bending loss is 0.58 dB/turn at a 10 mm bending radius. The LMA and excellent bending performance can be obtained simultaneously with the proposed fiber. 展开更多
关键词 bending trench multilayer cladding radius refractive curved hundreds straight photonic
原文传递
Prediction of Maximum Section Flattening of Thin-walled Circular Steel Tube in Continuous Rotary Straightening Process 被引量:7
8
作者 Zi-qian ZHANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第8期745-755,共11页
Cross-sectional ovalization of thin-walled circular steel tube because of large plastic bending,also known as the Brazier effect,usually occurs during the initial stage of tube′s continuous rotary straightening proce... Cross-sectional ovalization of thin-walled circular steel tube because of large plastic bending,also known as the Brazier effect,usually occurs during the initial stage of tube′s continuous rotary straightening process.The amount of ovalization,defined as maximal cross section flattening,is an important technical parameter in tube′s straightening process to control tube′s bending deformation and prevent buckling.However,for the lack of special analytical model,the maximal section flattening was determined in accordance with the specified charts developed by experienced operators on the basis of experimental data;thus,it was inevitable that the localized buckling might occur during some actual straightening operations.New normal strain component formulas were derived based on the thin shell theory.Then,strain energy of thin-walled tube(per unit length)was obtained using the elastic-plastic theory.A rational model for predicting the maximal section flattening of the thin-walled circular steel tube under its straightening process was presented by the principle of minimum potential energy.The new model was validated by experiments and numerical simulations.The results show that the new model agrees well with the experiments and the numerical simulations with error of less than 10%.This new model was expected to find its potential application in thin-walled steel tube straightening machine design. 展开更多
关键词 walled Rotary bending buckling length maximal radius localized Prediction rotary
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部