Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and str...Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and strain energy capacity of silty sands.The dissipated energy until liquefaction occurs was calculated by analyzing the results of three series of comprehensive cyclic direct simple shear and triaxial tests on Ottawa F65,Nevada,and Firoozkuh sands with varying silt content by weight and relative densities.Additionally,the shear wave velocity of each series was obtained using bender element or resonant column tests.Consequently,for the first time,a liquefaction triggering criterion,relating to effective overburden normalized liquefaction capacity energy(WL=s’c)to effective overburden stresscorrected shear wave velocity(eVs1)has been introduced.The accuracy of the proposed criteria was evaluated using in situ data.The results confirm the ability of shear wave velocity as a distinguishing parameter for separating liquefied and non-liquefied soils when it is calculated against liquefaction capacity energy(WL=s’c).However,the proposed WL=s’c-Vs1 curve,similar to previously proposed cyclic resistance ratio(CRR)-Vs1 relationships,should be used conservatively for fields vulnerable to liquefaction-induced lateral spreading.展开更多
Dynamic centrifuge model test was conducted to study the earthquake-induced differential settlement of foundation on cohesive ground, and the influence of asymmetry of building was investigated. During the experiment,...Dynamic centrifuge model test was conducted to study the earthquake-induced differential settlement of foundation on cohesive ground, and the influence of asymmetry of building was investigated. During the experiment, the overconsolidated kaolin clay ground with a three-dimensional asymmetrical structure model was shaken by a basically balanced input motion, and bender elements were used to measure shear wave velocities of model ground to reveal the soil fabric evolution during and after shaking. The test results show that, the total seismic settlement of foundation is composed of instantaneous and long-term post-earthquake settlements, and most of the differential settlement occurs immediately after the earthquake while the post-earthquake settlement is relatively uniform despite its large amplitude. The asymmetry of building affects the settlement behavior considerably. Compared with 1-or 2-dimensional structures, more evident differential settlement occurs under threedimensional asymmetrical building during shaking, which accounts for one-half of the total seismic settlements and results in complex spatial tilting effects of foundation.展开更多
文摘Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and strain energy capacity of silty sands.The dissipated energy until liquefaction occurs was calculated by analyzing the results of three series of comprehensive cyclic direct simple shear and triaxial tests on Ottawa F65,Nevada,and Firoozkuh sands with varying silt content by weight and relative densities.Additionally,the shear wave velocity of each series was obtained using bender element or resonant column tests.Consequently,for the first time,a liquefaction triggering criterion,relating to effective overburden normalized liquefaction capacity energy(WL=s’c)to effective overburden stresscorrected shear wave velocity(eVs1)has been introduced.The accuracy of the proposed criteria was evaluated using in situ data.The results confirm the ability of shear wave velocity as a distinguishing parameter for separating liquefied and non-liquefied soils when it is calculated against liquefaction capacity energy(WL=s’c).However,the proposed WL=s’c-Vs1 curve,similar to previously proposed cyclic resistance ratio(CRR)-Vs1 relationships,should be used conservatively for fields vulnerable to liquefaction-induced lateral spreading.
基金Supported by the National Basic Research Program of China("973"Project)(Grant No.2007CB714203)the China Postdoctoral Science Foundation(Grant Nos.20080430219,20081476)the Foundation for Seismological Researches,China Earthquake Administration(Grant No.200808022)
文摘Dynamic centrifuge model test was conducted to study the earthquake-induced differential settlement of foundation on cohesive ground, and the influence of asymmetry of building was investigated. During the experiment, the overconsolidated kaolin clay ground with a three-dimensional asymmetrical structure model was shaken by a basically balanced input motion, and bender elements were used to measure shear wave velocities of model ground to reveal the soil fabric evolution during and after shaking. The test results show that, the total seismic settlement of foundation is composed of instantaneous and long-term post-earthquake settlements, and most of the differential settlement occurs immediately after the earthquake while the post-earthquake settlement is relatively uniform despite its large amplitude. The asymmetry of building affects the settlement behavior considerably. Compared with 1-or 2-dimensional structures, more evident differential settlement occurs under threedimensional asymmetrical building during shaking, which accounts for one-half of the total seismic settlements and results in complex spatial tilting effects of foundation.