The bender element testing features its in-plane directivity, which allows using bender elements to measure the shear wave velocities in a wider range of in-plane configurations besides the standard tip-to-tip alignme...The bender element testing features its in-plane directivity, which allows using bender elements to measure the shear wave velocities in a wider range of in-plane configurations besides the standard tip-to-tip alignment. This paper proposed a novel bender element testing technique for measuring the horizontal shear wave velocity of soils, where the bender elements are surface- mounted and the axes of the source and receiver elements are parallel to each other. The preliminary tests performed on model ground of silica sand showed that, by properly determining the travel distance and time of the shear waves, the surface-mounted bender elements can perform as accurately as the conventional "tip-to-tip" configuration. Potentially, the present system provides a promising nondestructive tool for characterizing geomaterials and site conditions both in laboratory and in the fields.展开更多
Piezoelectric bender elements are widely used as electromechanical sensors and actuators, An analytical sandwich beam model for piezoelectric bender elements was developed based on the first-order shear deformation th...Piezoelectric bender elements are widely used as electromechanical sensors and actuators, An analytical sandwich beam model for piezoelectric bender elements was developed based on the first-order shear deformation theory (FSDT), which assumes a single rotation angle for the whole cross-section and a quadratic distribution function for coupled electric potential in piezoelectric layers, and corrects the effect of transverse shear strain on the electric displacement integration. Free vibration analysis of simplysupported bender elements was carried out and the numerical results showed that, solutions of the present model for various thickness-to-length ratios are compared well with the exact two-dimensional solutions, which presents an efficient and accurate model for analyzing dynamic electromechanical responses of bender elements.展开更多
An analytical sandwich beam model for piezoelectric bender elements is derived based on the first-order shear deformation theory (FSDT), which assumes a single rotation angle for the whole cross-section and a quadrati...An analytical sandwich beam model for piezoelectric bender elements is derived based on the first-order shear deformation theory (FSDT), which assumes a single rotation angle for the whole cross-section and a quadratic distribution for coupled electric potential in piezoelectric layers. Shear coefficient is introduced to correct the effect of transverse shear strain on shear force and the electric displacement integration. Static and free vibration analyses of simply-supported bender elements are carried out for the sensor function. The results illustrate the high accuracy of the present model compared with the exact 2D solutions.展开更多
Spectral induced polarization(SIP)and bender element(BE)techniques show a high sensitivity to particle size,particle distribution and content of generated hydration products,which essentially govern the efficiency of ...Spectral induced polarization(SIP)and bender element(BE)techniques show a high sensitivity to particle size,particle distribution and content of generated hydration products,which essentially govern the efficiency of ground improvement.In this context,both SIP and BE were integrated on a column setup to monitor the processes of lime and cement stabilization.A 5 mmol/L Na2CO3 solution was injected into the sand-lime mixture to produce CaCO3 precipitation,while deionized water was injected into the sandcement mixture to induce the hydration of cement.The average diameters of the precipitated particles or clusters were calculated from the relaxation time,which was a significant parameter of SIP signals,via the Schwarz equation.Two pairs of BE were used to demonstrate the heterogeneity of the product precipitation,which was probably caused by the location of the inflow and outflow on the SIP-BE column.SIP and BE showed the capability of nondestructively monitoring the spatiotemporal chemical evolution processes,which could be helpful for engineering applications.展开更多
Recent studies using field case history data yielded new criteria for evaluating liquefaction potential in saturated granular deposits based on in situ, stress-corrected shear wave velocity. However, the conditions of...Recent studies using field case history data yielded new criteria for evaluating liquefaction potential in saturated granular deposits based on in situ, stress-corrected shear wave velocity. However, the conditions of relatively insufficient case histories and limited site conditions in this approach call for additional data to more reliably define liquefaction resistance as a function of shear wave velocity. In this study, a series of undrained cyclic triaxial tests were conducted on saturated sand with shear wave velocity Vs measured by bender element. By normalizing the data with respect to minimum void ratio, the test results, in-corporated with previously published laboratory data, statistically revealed good correlation of cyclic shear strength with small-strain shear modulus for sandy soils, which is almost irrespective of soil types and confining pressures. The consequently determined cyclic resistance ratio, CRR, was found to be approximately proportional to Vs4. Liquefaction resistance boundary curves were established by applying this relationship and compared to liquefaction criteria derived from seismic field measure-ments. Although in the range of Vs1>200 m/s the presented curves are moderately conservative, they are remarkably consistent with the published field performance criteria on the whole.展开更多
The moisture content of subgrade soil in seasonally frozen regions is often higher than its optimum value,leading to a decline in mechanical properties and a reduction in subgrade bearing capacity.Electro-osmosis has ...The moisture content of subgrade soil in seasonally frozen regions is often higher than its optimum value,leading to a decline in mechanical properties and a reduction in subgrade bearing capacity.Electro-osmosis has shown promise as a technology for controlling subgrade moisture,but significant heterogeneity has also been observed in treated soil.This study investigates the impact of electro-osmosis on soil stiffness through a series of bender element tests of compacted clay.The effects of dry density and supply voltage on the performance of electroosmosis treatment and the layered structure and anisotropy of the soil were analyzed.The results show that electro-osmosis treatment increased the shear wave velocity of the soil by 140% compared to untreated saturated soil and by 70% compared to soil with optimum water content.It has also been found that layered compaction of soil resulted in a layered structure,with electro-osmosis having a more prominent impact on soil near the cathode,resulting in a more pronounced layered structure.Besides,electro-osmosis was found to enhance soil anisotropy,particularly near the anode.Increasing the dry density and voltage levels can help improve soil uniformity.These findings provide insights into the potential use of electro-osmosis in improving soil stiffness,which could benefit various engineering applications.展开更多
Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and str...Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and strain energy capacity of silty sands.The dissipated energy until liquefaction occurs was calculated by analyzing the results of three series of comprehensive cyclic direct simple shear and triaxial tests on Ottawa F65,Nevada,and Firoozkuh sands with varying silt content by weight and relative densities.Additionally,the shear wave velocity of each series was obtained using bender element or resonant column tests.Consequently,for the first time,a liquefaction triggering criterion,relating to effective overburden normalized liquefaction capacity energy(WL=s’c)to effective overburden stresscorrected shear wave velocity(eVs1)has been introduced.The accuracy of the proposed criteria was evaluated using in situ data.The results confirm the ability of shear wave velocity as a distinguishing parameter for separating liquefied and non-liquefied soils when it is calculated against liquefaction capacity energy(WL=s’c).However,the proposed WL=s’c-Vs1 curve,similar to previously proposed cyclic resistance ratio(CRR)-Vs1 relationships,should be used conservatively for fields vulnerable to liquefaction-induced lateral spreading.展开更多
Laboratory tests were performed on Toyoura sand specimens to investigate the relationship between degree of saturation Sr, B-value and P-wave velocity Vp. Different types of pore water (de-aired water or tap water) ...Laboratory tests were performed on Toyoura sand specimens to investigate the relationship between degree of saturation Sr, B-value and P-wave velocity Vp. Different types of pore water (de-aired water or tap water) and pore gas (air or CO2) as well as different magnitudes of back pressure were used to achieve different Sr (or B-value). The measured relationship between B-value and Vp was not consistent with the theoretical prediction. The measurement shows that the Vp value in the specimen flushed with de-aired water is independent of B-value (or St) and is always around the one in fully saturated condition. However, the Vp value in the specimen flushed with tap water increases with B-value, but the shape of the relationship between Vp and B-value is quite different from the theoretical prediction. The possible explanation for the discrepancy between laboratory measurement and theoretical prediction lies in that the air exists in the water as air bubbles and therefore the pore fluid (air-water mixture) is heterogeneous instead of homogenous assumed in the theoretical prediction.展开更多
Instabilities of shallow gas-charged seabed are potential geological hazards in ocean engineering.In practice,the conventional field sampling techniques failed to obtain undisturbed gas-bearing sediments from the seab...Instabilities of shallow gas-charged seabed are potential geological hazards in ocean engineering.In practice,the conventional field sampling techniques failed to obtain undisturbed gas-bearing sediments from the seabed for laboratory mechanical testing because of sensitive gas exsolution and escape from sediments.However,preparation of representative remoulded gas-charged specimens is a challenging issue,because it is rather difficult to quantitatively control the gas content and obtain uniform distribution of gas bubbles within the specimen.Given the above problems,this work proposes a reliable approach to reconstitute the high-saturation specimen of gas-charged sediments in the laboratory by an improved multifunction integrated triaxial apparatus(MITA).This apparatus is developed based on an advanced stress path triaxial system by introducing a temperature-controlled system and a wavemonitoring system.The temperature-controlled system is used to accurately mimic the in situ environments of sediments in the seabed.The wave-monitoring system is utilized to identify exsolution point of free gas and examine the disturbance of gas to specimens during gas exsolution.The detailed procedure of gassy specimen preparation is introduced.Then,the quality of prepared specimens using our improved apparatus is validated by the high-resolution micro-X-ray computed tomography(mCT)scanning test,from which bubble occurrence and size distribution within the gassy sand specimen can be obtained;and preliminary mechanical tests on gassy sand specimens with various initial saturation degrees are performed.The proposed specimen preparation procedure succeeds in proving the postulated occurrence state of gas bubbles in coarse-grained sediments and accurately controlling the gas content.展开更多
In this study, extender and bender element tests were conducted investigating the small-strain Poisson’s ratio of variable sands, with a focus on the effect of stress anisotropy in order to quantify the sensitivity o...In this study, extender and bender element tests were conducted investigating the small-strain Poisson’s ratio of variable sands, with a focus on the effect of stress anisotropy in order to quantify the sensitivity of Poisson’s ratio to the applied deviatoric stress. Four different uniform sands were tested, including a biogenic sand, a crushed rock and two natural sands, covering a wide range of particle shapes. From these sands, eleven samples were prepared in the laboratory and were tested under variable stress paths,maintaining a constant mean effective pressure while increasing the deviatoric compressive load. Under the application of these given stress paths, the data analysis indicated that the sensitivity of Poisson’s ratio to the stress ratio was more pronounced for sands with irregularly shaped particles in comparison to sands with fairly rounded and spherical grains. For sands with very irregularly shaped particles, the increase of Poisson’s ratio from the isotropic to the anisotropic stress state reached 50%, while this increase for natural sands with fairly rounded particles was in the order of 20%.展开更多
The aim of this research was to explain the effects of relative density,mean effective stress,grading characteristics,consolidation stress ratio and initial fabric anisotropy produced during specimen preparation on sh...The aim of this research was to explain the effects of relative density,mean effective stress,grading characteristics,consolidation stress ratio and initial fabric anisotropy produced during specimen preparation on shear wave velocity(Vs).It is shown that the Vs of the consolidated specimens under anisotropic compression stress is greater than that of the consolidated specimens under isotropic or anisotropic extension stress states at a given relative density and effective confining stress.It is also shown that the depositional technique that was used to create reconstituted specimens has important effect on the Vs.A parallel comparison of measured values from the resonant column and bender element tests is also presented.These results of the tests have been employed to develop a generalized relationship for predicting Vs of granular soils.The Vs model is validated using data collected from literatures.Based on the results,it can be conducted that the proposed model has a good performance and is capable of evaluating the Vs of granular soil.展开更多
The seismic loading on saturated soil deposits induces a decrease in effective stress and a rearrangement of the soil-particle structure, which may both lead to a degradation in undrained stiffness and strength of soi...The seismic loading on saturated soil deposits induces a decrease in effective stress and a rearrangement of the soil-particle structure, which may both lead to a degradation in undrained stiffness and strength of soils. Only the effective stress influence on small strain shear modulus Gmax is considered in seismic response analysis nowadays, and the cyclic shearing induced fabric changes of the soil-particle structure are neglected. In this paper, undrained cyclic triaxial tests were conducted on saturated sands with the shear wave velocity measured by bender element, to study the influences of seismic loading on Gmax. And Gmax of samples without cyclic loading effects was also investigated for comparison. The test results indicated that Gmax under cyclic loading effects is lower than that without such effects at the same effective stress, and also well correlated with the effective stress variation. Hence it is necessary to reinvestigate the determination of Gmax in seismic response analysis carefully to predict the ground responses during earthquake more reasonably.展开更多
Great interest has been aroused on deeply-situated Osaka clay since Kobe Earthquake in 1994. In this paper is presented the analysis on the results of a series of lab tests on Osaka clay situated from 100 m to 1500 m ...Great interest has been aroused on deeply-situated Osaka clay since Kobe Earthquake in 1994. In this paper is presented the analysis on the results of a series of lab tests on Osaka clay situated from 100 m to 1500 m under the ground. The wave velocity method, bender element method, LDT and the formula derived by the authors are used, focus is put on the pre-failure mechanical behavior of the clay. The analysis shows that, (i) pore-pressure coefficient B is less than 1.0, (ii) the relationship between shear modulus and Poisson's ratio is not in agreement with that reported before, (iii) the modulus measured with LDT is still less than that measured with bender element method, and (iv) there are two threshold strains, within which the clay can be considered as elastic, and both of them are larger than that reported before.展开更多
基金Project supported by the National Basic Research Program (973) of China (No. 2007CB714203)the China Postdoctoral Science Foun-dation (No. 20080430219)partly supported by the Foundation for Seismological Researches, China Earthquake Administration (No. 200808022)
文摘The bender element testing features its in-plane directivity, which allows using bender elements to measure the shear wave velocities in a wider range of in-plane configurations besides the standard tip-to-tip alignment. This paper proposed a novel bender element testing technique for measuring the horizontal shear wave velocity of soils, where the bender elements are surface- mounted and the axes of the source and receiver elements are parallel to each other. The preliminary tests performed on model ground of silica sand showed that, by properly determining the travel distance and time of the shear waves, the surface-mounted bender elements can perform as accurately as the conventional "tip-to-tip" configuration. Potentially, the present system provides a promising nondestructive tool for characterizing geomaterials and site conditions both in laboratory and in the fields.
基金the National Natural Science Foundation of China(No.10472102)theNational Basic Research Program of China(No.2007CB714200)
文摘Piezoelectric bender elements are widely used as electromechanical sensors and actuators, An analytical sandwich beam model for piezoelectric bender elements was developed based on the first-order shear deformation theory (FSDT), which assumes a single rotation angle for the whole cross-section and a quadratic distribution function for coupled electric potential in piezoelectric layers, and corrects the effect of transverse shear strain on the electric displacement integration. Free vibration analysis of simplysupported bender elements was carried out and the numerical results showed that, solutions of the present model for various thickness-to-length ratios are compared well with the exact two-dimensional solutions, which presents an efficient and accurate model for analyzing dynamic electromechanical responses of bender elements.
基金Project supported by the National Natural Science Foundation of China (No. 10472102)the National Basic Research Program(973) of China (No. 2007CB714200)
文摘An analytical sandwich beam model for piezoelectric bender elements is derived based on the first-order shear deformation theory (FSDT), which assumes a single rotation angle for the whole cross-section and a quadratic distribution for coupled electric potential in piezoelectric layers. Shear coefficient is introduced to correct the effect of transverse shear strain on shear force and the electric displacement integration. Static and free vibration analyses of simply-supported bender elements are carried out for the sensor function. The results illustrate the high accuracy of the present model compared with the exact 2D solutions.
基金This research is sponsored by the Basic Science Center Program for Multiphase Evolution in Hypergravity of the National Natural Science Foundation of China(Grant No.51988101)Ministry of Science and Technology of China(Grant No.2019YFC1805002)Financial support from the Overseas Expertise Introduction Center for Discipline Innovation(Grant No.B18047)is also acknowledged.Insightful and constructive comments from the anonymous reviewers are sincerely appreciated,which helped improve the quality of this paper immensely.
文摘Spectral induced polarization(SIP)and bender element(BE)techniques show a high sensitivity to particle size,particle distribution and content of generated hydration products,which essentially govern the efficiency of ground improvement.In this context,both SIP and BE were integrated on a column setup to monitor the processes of lime and cement stabilization.A 5 mmol/L Na2CO3 solution was injected into the sand-lime mixture to produce CaCO3 precipitation,while deionized water was injected into the sandcement mixture to induce the hydration of cement.The average diameters of the precipitated particles or clusters were calculated from the relaxation time,which was a significant parameter of SIP signals,via the Schwarz equation.Two pairs of BE were used to demonstrate the heterogeneity of the product precipitation,which was probably caused by the location of the inflow and outflow on the SIP-BE column.SIP and BE showed the capability of nondestructively monitoring the spatiotemporal chemical evolution processes,which could be helpful for engineering applications.
基金Project supported by the National Natural Science Foundation of China (No. 10372089), and Department of Education of Zhejiang Province (No. 20010572), China
文摘Recent studies using field case history data yielded new criteria for evaluating liquefaction potential in saturated granular deposits based on in situ, stress-corrected shear wave velocity. However, the conditions of relatively insufficient case histories and limited site conditions in this approach call for additional data to more reliably define liquefaction resistance as a function of shear wave velocity. In this study, a series of undrained cyclic triaxial tests were conducted on saturated sand with shear wave velocity Vs measured by bender element. By normalizing the data with respect to minimum void ratio, the test results, in-corporated with previously published laboratory data, statistically revealed good correlation of cyclic shear strength with small-strain shear modulus for sandy soils, which is almost irrespective of soil types and confining pressures. The consequently determined cyclic resistance ratio, CRR, was found to be approximately proportional to Vs4. Liquefaction resistance boundary curves were established by applying this relationship and compared to liquefaction criteria derived from seismic field measure-ments. Although in the range of Vs1>200 m/s the presented curves are moderately conservative, they are remarkably consistent with the published field performance criteria on the whole.
基金supported by the National Natural Science Foundation of China(No.41971076,No.42171128)。
文摘The moisture content of subgrade soil in seasonally frozen regions is often higher than its optimum value,leading to a decline in mechanical properties and a reduction in subgrade bearing capacity.Electro-osmosis has shown promise as a technology for controlling subgrade moisture,but significant heterogeneity has also been observed in treated soil.This study investigates the impact of electro-osmosis on soil stiffness through a series of bender element tests of compacted clay.The effects of dry density and supply voltage on the performance of electroosmosis treatment and the layered structure and anisotropy of the soil were analyzed.The results show that electro-osmosis treatment increased the shear wave velocity of the soil by 140% compared to untreated saturated soil and by 70% compared to soil with optimum water content.It has also been found that layered compaction of soil resulted in a layered structure,with electro-osmosis having a more prominent impact on soil near the cathode,resulting in a more pronounced layered structure.Besides,electro-osmosis was found to enhance soil anisotropy,particularly near the anode.Increasing the dry density and voltage levels can help improve soil uniformity.These findings provide insights into the potential use of electro-osmosis in improving soil stiffness,which could benefit various engineering applications.
文摘Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and strain energy capacity of silty sands.The dissipated energy until liquefaction occurs was calculated by analyzing the results of three series of comprehensive cyclic direct simple shear and triaxial tests on Ottawa F65,Nevada,and Firoozkuh sands with varying silt content by weight and relative densities.Additionally,the shear wave velocity of each series was obtained using bender element or resonant column tests.Consequently,for the first time,a liquefaction triggering criterion,relating to effective overburden normalized liquefaction capacity energy(WL=s’c)to effective overburden stresscorrected shear wave velocity(eVs1)has been introduced.The accuracy of the proposed criteria was evaluated using in situ data.The results confirm the ability of shear wave velocity as a distinguishing parameter for separating liquefied and non-liquefied soils when it is calculated against liquefaction capacity energy(WL=s’c).However,the proposed WL=s’c-Vs1 curve,similar to previously proposed cyclic resistance ratio(CRR)-Vs1 relationships,should be used conservatively for fields vulnerable to liquefaction-induced lateral spreading.
基金Foundation item: Project(2012CB719803) supported by the National Basic Research Program of China Project(201011159098) supported by the Seed Funding for Basic Research Scheme from The University of Hong Kong, China
文摘Laboratory tests were performed on Toyoura sand specimens to investigate the relationship between degree of saturation Sr, B-value and P-wave velocity Vp. Different types of pore water (de-aired water or tap water) and pore gas (air or CO2) as well as different magnitudes of back pressure were used to achieve different Sr (or B-value). The measured relationship between B-value and Vp was not consistent with the theoretical prediction. The measurement shows that the Vp value in the specimen flushed with de-aired water is independent of B-value (or St) and is always around the one in fully saturated condition. However, the Vp value in the specimen flushed with tap water increases with B-value, but the shape of the relationship between Vp and B-value is quite different from the theoretical prediction. The possible explanation for the discrepancy between laboratory measurement and theoretical prediction lies in that the air exists in the water as air bubbles and therefore the pore fluid (air-water mixture) is heterogeneous instead of homogenous assumed in the theoretical prediction.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51979269,51579237 and 51779017).
文摘Instabilities of shallow gas-charged seabed are potential geological hazards in ocean engineering.In practice,the conventional field sampling techniques failed to obtain undisturbed gas-bearing sediments from the seabed for laboratory mechanical testing because of sensitive gas exsolution and escape from sediments.However,preparation of representative remoulded gas-charged specimens is a challenging issue,because it is rather difficult to quantitatively control the gas content and obtain uniform distribution of gas bubbles within the specimen.Given the above problems,this work proposes a reliable approach to reconstitute the high-saturation specimen of gas-charged sediments in the laboratory by an improved multifunction integrated triaxial apparatus(MITA).This apparatus is developed based on an advanced stress path triaxial system by introducing a temperature-controlled system and a wavemonitoring system.The temperature-controlled system is used to accurately mimic the in situ environments of sediments in the seabed.The wave-monitoring system is utilized to identify exsolution point of free gas and examine the disturbance of gas to specimens during gas exsolution.The detailed procedure of gassy specimen preparation is introduced.Then,the quality of prepared specimens using our improved apparatus is validated by the high-resolution micro-X-ray computed tomography(mCT)scanning test,from which bubble occurrence and size distribution within the gassy sand specimen can be obtained;and preliminary mechanical tests on gassy sand specimens with various initial saturation degrees are performed.The proposed specimen preparation procedure succeeds in proving the postulated occurrence state of gas bubbles in coarse-grained sediments and accurately controlling the gas content.
基金the financial support by the grant from the Research Grant Council of the Hong Kong Special Administrative Region(HKSAR)China Project No.9041880(City U112813)the start-up grant of the College of Science and Engineering,City University of Hong Kong(Code:7200533-ACE)
文摘In this study, extender and bender element tests were conducted investigating the small-strain Poisson’s ratio of variable sands, with a focus on the effect of stress anisotropy in order to quantify the sensitivity of Poisson’s ratio to the applied deviatoric stress. Four different uniform sands were tested, including a biogenic sand, a crushed rock and two natural sands, covering a wide range of particle shapes. From these sands, eleven samples were prepared in the laboratory and were tested under variable stress paths,maintaining a constant mean effective pressure while increasing the deviatoric compressive load. Under the application of these given stress paths, the data analysis indicated that the sensitivity of Poisson’s ratio to the stress ratio was more pronounced for sands with irregularly shaped particles in comparison to sands with fairly rounded and spherical grains. For sands with very irregularly shaped particles, the increase of Poisson’s ratio from the isotropic to the anisotropic stress state reached 50%, while this increase for natural sands with fairly rounded particles was in the order of 20%.
文摘The aim of this research was to explain the effects of relative density,mean effective stress,grading characteristics,consolidation stress ratio and initial fabric anisotropy produced during specimen preparation on shear wave velocity(Vs).It is shown that the Vs of the consolidated specimens under anisotropic compression stress is greater than that of the consolidated specimens under isotropic or anisotropic extension stress states at a given relative density and effective confining stress.It is also shown that the depositional technique that was used to create reconstituted specimens has important effect on the Vs.A parallel comparison of measured values from the resonant column and bender element tests is also presented.These results of the tests have been employed to develop a generalized relationship for predicting Vs of granular soils.The Vs model is validated using data collected from literatures.Based on the results,it can be conducted that the proposed model has a good performance and is capable of evaluating the Vs of granular soil.
基金Project supported by the National Natural Science Foundation ofChina (No. 10372089) and Provincial Department of EducationZhejiang Province (No. 20010572) China
文摘The seismic loading on saturated soil deposits induces a decrease in effective stress and a rearrangement of the soil-particle structure, which may both lead to a degradation in undrained stiffness and strength of soils. Only the effective stress influence on small strain shear modulus Gmax is considered in seismic response analysis nowadays, and the cyclic shearing induced fabric changes of the soil-particle structure are neglected. In this paper, undrained cyclic triaxial tests were conducted on saturated sands with the shear wave velocity measured by bender element, to study the influences of seismic loading on Gmax. And Gmax of samples without cyclic loading effects was also investigated for comparison. The test results indicated that Gmax under cyclic loading effects is lower than that without such effects at the same effective stress, and also well correlated with the effective stress variation. Hence it is necessary to reinvestigate the determination of Gmax in seismic response analysis carefully to predict the ground responses during earthquake more reasonably.
文摘Great interest has been aroused on deeply-situated Osaka clay since Kobe Earthquake in 1994. In this paper is presented the analysis on the results of a series of lab tests on Osaka clay situated from 100 m to 1500 m under the ground. The wave velocity method, bender element method, LDT and the formula derived by the authors are used, focus is put on the pre-failure mechanical behavior of the clay. The analysis shows that, (i) pore-pressure coefficient B is less than 1.0, (ii) the relationship between shear modulus and Poisson's ratio is not in agreement with that reported before, (iii) the modulus measured with LDT is still less than that measured with bender element method, and (iv) there are two threshold strains, within which the clay can be considered as elastic, and both of them are larger than that reported before.