Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address...Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address the intricacies of soil-pile interaction.Despite recent advancements in machine learning techniques,there is a persistent need to establish data-driven models that can predict these parameters without using numerical simulations due to the difficulties in conducting correct numerical simulations and the need for constitutive modelling parameters that are not readily available.This research presents novel lateral displacement and bending moment predictive models for closed and open-ended pipe piles,employing a Genetic Programming(GP)approach.Utilizing a soil dataset extracted from existing literature,comprising 392 data points for both pile types embedded in cohesionless soil and subjected to earthquake loading,the study intentionally limited input parameters to three features to enhance model simplicity:Standard Penetration Test(SPT)corrected blow count(N60),Peak Ground Acceleration(PGA),and pile slenderness ratio(L/D).Model performance was assessed via coefficient of determination(R^(2)),Root Mean Squared Error(RMSE),and Mean Absolute Error(MAE),with R^(2) values ranging from 0.95 to 0.99 for the training set,and from 0.92 to 0.98 for the testing set,which indicate of high accuracy of prediction.Finally,the study concludes with a sensitivity analysis,evaluating the influence of each input parameter across different pile types.展开更多
We determined the effects of adhesive type and loose tenon dimensions (length and thickness) on bending strength of T-shaped mor- tise and loose-tenon joints. Polyvinyl acetate (PVAc) and two-component polyuretha...We determined the effects of adhesive type and loose tenon dimensions (length and thickness) on bending strength of T-shaped mor- tise and loose-tenon joints. Polyvinyl acetate (PVAc) and two-component polyurethane (PU) adhesives were used to construct joint specimens. The bending moment capacity of joints increased significantly with increased length and thickness of the loose tenon. Bending moment capacity of joints constructed with PU adhesive was approximately 13% higher than for joints constructed with PVAc adhesive. We developed a predictive equation as a function of adhesive type and loose tenon dimensions to estimate the strength of the joints constructed of oriental beech (Fagus orientalis L.) under uniaxial bending load.展开更多
We investigated bending moment resistance under diagonal compression load of comer doweled joints with plywood members. Joint members were made of ll-ply hardwood plywood of 19 mm thickness. Dowels were fabricated of ...We investigated bending moment resistance under diagonal compression load of comer doweled joints with plywood members. Joint members were made of ll-ply hardwood plywood of 19 mm thickness. Dowels were fabricated of Beech and Hornbeam species. Their diameters (6, 8 and 10 mm) and depths of penetration (9, 13 and 17 ram) in joint members were chosen variables in our experiment. By increasing the connector's diameter from 6 to 8 mm, the bending moment resistance under diagonal compressive load was increased, while it decreased when the diameter was increased from 8 to 10 mm. The bending moment re- sistance under diagonal compressive load was increased by increasing the dowel's depth of penetration. Joints made with dowels of Beech had higher resistance than dowels of Hornbeam. Highest resisting moment (45.18 N.m) was recorded for joints assembled with 8 mm Beech dowels penetrating 17 mm into joint members Lowest resisting moment (13.35 N.m) was recorded for joints assembled with 6 mm Hornbeam dowels and penetrating 9 mm into joint members.展开更多
The wave-induced vertical ship motions and bending moments of a double hull-oil tanker in realistic flooding conditions are studied. The scenarios investigated are represented by water ingress into the starboard balla...The wave-induced vertical ship motions and bending moments of a double hull-oil tanker in realistic flooding conditions are studied. The scenarios investigated are represented by water ingress into the starboard ballast tanks for collision damage cases and both starboard and portside ballast tanks for grounding situations. Seakeeping computations are performed for eight damage scenarios and for the intact condition, each corresponding to different changes in displacement, trim, and heel. For each of the damage conditions, transfer functions of vertical motions and loads are calculated using a potential linear 3 D panel hydrodynamic code in the frequency domain that includes effect of the motion of the water in flooded tanks. A MATLAB code is developed to facilitate automated hydrodynamic simulation of many damage scenarios. Verification of seakeeping results is performed by comparing transfer functions with results of the previous study. Wave-induced vertical responses of damaged ship are then compared to those of intact ship using two spectral-based methods originating from uncertainty analysis of wave loads, which are convenient tools to assess consequences of damage on short-term ship responses. Generally, observed trend is that vertical wave-induced responses of damaged ship converge toward those of intact ship with increasing wave period. Fairly small differences between responses of asymmetrically damaged ship with respect to the symmetrical incoming wave directions are found. The results of the study are an efficient method for seakeeping assessment of damaged oil tankers and the framework for evaluating consequences of damage scenarios, heading angles, and sea conditions on seakeeping responses of damaged ships.The results can be used to decide if the intact ship model can be used instead of the damaged one for the emergency response procedure or for the risk assessment studies when modeling and computational time represent important limitations.展开更多
In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, ...In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, preflex beam with alterative web depth and preflex beam with aherative steel flange thickness, are dis- cussed on how to achieve the equivalent moment of inertia and Young' s modulus. Additionally, methods of cal- culating the equivalent bending stiffness and post-cracking deflection are proposed. Results of the experiments on 6 beams agree well with the theoretical analysis, which proves the correctness of the proposed formulas.展开更多
For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-p...For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.展开更多
We conducted a detailed analysis of along-trench variations in the flexural bending of the subducting Pacific Plate at the Tonga-Kermadec Trench.Inversions were conducted to obtain best-fitting solutions of trench-axi...We conducted a detailed analysis of along-trench variations in the flexural bending of the subducting Pacific Plate at the Tonga-Kermadec Trench.Inversions were conducted to obtain best-fitting solutions of trench-axis loadings and variations in the effective elastic plate thickness for the analyzed flexural bending profiles.Results of the analyses revealed significant along-trench variations in plate flexural bending:the trench relief(W0)of 1.9 to 5.1 km;trench-axis vertical loading(V0)of-0.5×10^12 to 2.2×10^12 N/m;axial bending moment(M0)of 0.1×10^17 to 2.2×10^17 N;effective elastic plate thickness seaward of the outer-rise region(Te^M)of 20 to 65 km,trench-ward of the outer-rise(Te^M)of 11 to 33 km,and the transition distance(Xr)of 20 to 95 km.The Horizon Deep,the second greatest trench depth in the world,has the greatest trench relief(W0 of 5.1km)and trench-axis loading(V0 of 2.2×10^12N/m);these values are only slightly smaller than that of the Challenger Deep(W0 of 5.7km and V0 of 2.9×10^12N/m)and similar to that of the Sirena Deep(W0 of 5.2 km and V0 of 2.0×10^12 N/m)of the Mariana Trench,suggesting that these deeps are linked to great flexural bending of the subducting plates.Analyses using three independent methods,i.e.,the/inversion,the flexural curvature/yield strength envelope analysis,and the elasto-plastic bending model with normal faults,all yielded similar average Te reduction of 28%-36% and average Te reduction area S△Te of 1195-1402 km^2 near the trench axis.The calculated brittle yield zone depth from the flexural curvature/yield strength envelope analysis is also consistent with the distribution of the observed normal faulting earthquakes.Comparisons of the Manila,Philippine,Tonga-Kermadec,Japan,and Mariana Trenches revealed that the average values Te^M of Te^M and both in general increase with the subducting plate age.展开更多
Bulge is a defect that causes geometrical inaccuracy and premature failure in the innovative incremental sheet forming (ISF) process. This study has two-fold objectives:(1) knowing the bulging behavior of a Cu clad tr...Bulge is a defect that causes geometrical inaccuracy and premature failure in the innovative incremental sheet forming (ISF) process. This study has two-fold objectives:(1) knowing the bulging behavior of a Cu clad tri-layered steel sheet as a function of forming conditions, and (2) analyzing the bending effect on bulging in an attempt to identify the associated mechanism. A series of ISF tests and bending analysis are performed to realize these objectives. From the cause-effect analysis, it is found that bulge formation in the layered sheet is sensitive to forming conditions in a way that bulging can be minimized utilizing annealed material and performing ISF with larger tool diameter and step size. The bending under tension analysis reveals that the formation of bulge is an outgrowth of bending moment that the forming tool applies on the sheet during ISF. Furthermore, the magnitude of bending moment depending upon the forming conditions varies from 0.046 to 10.24 N·m/m and causes a corresponding change in the mean bulge height from 0.07 to 0.91 mm. The bending moment governs bulging in layered sheet through a linear law. These findings lead to a conclusion that the bulge defect can be overcome by controlling the bending moment and the formula proposed can be helpful in this regards.展开更多
The bending moment acting on the overhung shaft of a gas-sparged vessel stirred by a Rushton turbine,as one of the results of fluid and structure interactions in stirred vessels,was measured using a moment sensor equi...The bending moment acting on the overhung shaft of a gas-sparged vessel stirred by a Rushton turbine,as one of the results of fluid and structure interactions in stirred vessels,was measured using a moment sensor equipped with digital telemetry.An analysis of the shaft bending moment amplitude shows that the amplitude distribution of the bending moment,which indicates the elasticity nature of shaft material against bending deformation,follows the Weibull distribution.The trends of amplitude mean,standard deviation and peak deviation characteristics manifest an "S" shape versus gas flow.The "S" trend of the relative mean bending moment over gas flow rate,depending on the flow regime in gas-liquid stirred vessels,resulted from the competition among the nonuniformity of bubbly flow around the impeller,the formation of gas cavities behind the blades,and the gas direct impact on the impeller when gas is introduced.A further analysis of the bending moment power spectral density shows that the rather low frequency and speed frequency are evident.The low-frequency contribution to bending moment fluctuation peaks in the complete dispersion regime.展开更多
The purpose of the present study is to investigate the influence of different types of shear connectors on mechanical behavior of composite steel and concrete girders under negative bending moment. Two overturned simp...The purpose of the present study is to investigate the influence of different types of shear connectors on mechanical behavior of composite steel and concrete girders under negative bending moment. Two overturned simply supported steel-concrete composite girders with different shear connectors including studs and PBLs (perfo-bond strips) were tested under point load in the mid-span. Based on the experimental observations, a three-dimensional FE (finite element) model capable of analyzing the composite girders subjected to negative bending moment was built. Load and deformation response, concrete initial cracking and composite girder ultimate load bearing capacity, strain development process of reinforcing bars before and after concrete cracking were observed in the test and compared with the numerical values. Results predicted by this modeling method are in good agreement with those obtained from the tests. Furthermore, the %rack closure" or "through crack" load were recorded by π-ganges in the tests and compared with the code-specified ultimate load.展开更多
The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines(half circular blades disk turbine, half el...The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines(half circular blades disk turbine, half elliptical blades disk turbine, and parabolic blades disk turbine) were experimentally measured by a customized moment sensor. The results show that the amplitude distribution of torque can be fitted by a symmetric bimodal distribution for disk turbines, and generally the distribution is more dispersive as the blade curvature or the gas flow rate increases. The amplitude distribution of shaft bending moment can be fitted by an asymmetric Weibull distribution for disk turbines. The relative shaft bending moment manifests a "rising-falling-rising" trend over the gas flow number, which is a corporate contribution of the unstable gas–liquid flow around the impeller, the gas cavities behind the blades, and the direct impact of gas on the impeller. And the "falling" stage is greater and lasts wider over the gas flow number for Rushton turbine than for the curved-blade disk turbines.展开更多
We determined the effects of the penetration depth and spline material and composite material type as well as joining method on bending moment resistance under diagonal compression and tension in common wood panel str...We determined the effects of the penetration depth and spline material and composite material type as well as joining method on bending moment resistance under diagonal compression and tension in common wood panel structures. Composite materials were laminated medium density fiberboard (MDF) and particleboard. Joining methods were butt and miter types. Spline materials were high density fiberboard (HDF). The penetration depths of plywood, wood (Carpinus betolus) and spline were 8, 11 and 14 mm. The results showed that in both diagonal com- pression and tension, MDF joints are stronger than particleboard joints, and the bending moment resistance under compression is higher compared with that in tension. The highest bending moment resistance under tension was shown in MDF, butt joined using plywood spline with 8 mm penetration depth, whereas under compression bending moment resistance was seen in MDF, miter joined with the HDF spline of 14 mm penetration depth.展开更多
The paper is dedicated to the development of the theory of orthotropic thick plates with consideration of internal forces, moments and bimoments. The equations of motion of a plate are described by two systems of six ...The paper is dedicated to the development of the theory of orthotropic thick plates with consideration of internal forces, moments and bimoments. The equations of motion of a plate are described by two systems of six equations. New equations of motion of the plate and the boundary conditions relative to displacements, forces, moments, and bimoments are given. As an example, the problems of free and forced oscillations of a thick plate are considered under the effect of sinusoidal periodic load. The problem is solved by Finite Difference Method. Eigenfrequencies of the plate are determined, numeric maximum values of displacements, forces and moments of the plate are obtained depending on the frequency of external force. It is shown that when the value of the frequency of external effect approaches the eigenfrequency, there occurs an increase in displacement, force and moment values;that testifies a gradual transition of the motion of plate points into the resonant mode.展开更多
In this paper, by using adequate stress-strain relationship, mesh elements, boundary conditions and loading conditions, the finite element ANSYS analysis on the behavior of circular tubes subjected to symmetrical cycl...In this paper, by using adequate stress-strain relationship, mesh elements, boundary conditions and loading conditions, the finite element ANSYS analysis on the behavior of circular tubes subjected to symmetrical cyclic bending with or without external pressure is discussed. The behavior includes the moment-curvature and ovalization-curvature relationships. In addition, the calculated ovalizations at two different sections, middle and right cross-sections, are also included. Experimental data for 6061-T6 aluminum alloy tubes subjected to cyclic bending with or without external pressure were compared with the ANSYS analysis. It has been shown that the analysis of the elastoplatic moment-curvature relationship and the symmetrical, ratcheting and increasing ovalization-curvature relationship is in good agreement with the experimental data.展开更多
Instead of the biharmonic type equation, a set of new governing equations and solving method for circular sector plate bending is presented based on the analogy between plate bending and plane elasticity problems. So ...Instead of the biharmonic type equation, a set of new governing equations and solving method for circular sector plate bending is presented based on the analogy between plate bending and plane elasticity problems. So the Hamiltonian system can also be applied to plate bending problems by introducing bending moment functions. The new method presents the analytical solution for the circular sector plate. The results show that the new method is effective.展开更多
Transport of nanoparticles and coagulation is simulated with the combination of CFD in a circular bend. The Taylor-expansion moment method(TEMOM)is employed to study dynamics of nanoparticles with Brownian motion,base...Transport of nanoparticles and coagulation is simulated with the combination of CFD in a circular bend. The Taylor-expansion moment method(TEMOM)is employed to study dynamics of nanoparticles with Brownian motion,based on the flow field from numerical simulation.A fully developed flow pattern in the present simulation is compared with previous numerical results for validating the model and computational code.It is found that for the simulated particulate flow system,the particle mass concentration,number concentration,particle polydispersity, mean particle diameter and geometric standard deviation over cross-section increase with time.The distribution of particle mass concentration at different time is independent of the initial particle size.More particles are concen-trated at outer edge of the bend.Coagulation plays more important role at initial stage than that in the subsequent period.The increase of Reynolds number and initial particle size leads to the increase of particle number concentration.The particle polydispersity,mean particle diameter and geometric standard deviation increase with decreasing Reynolds number and initial particle size.展开更多
文摘Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address the intricacies of soil-pile interaction.Despite recent advancements in machine learning techniques,there is a persistent need to establish data-driven models that can predict these parameters without using numerical simulations due to the difficulties in conducting correct numerical simulations and the need for constitutive modelling parameters that are not readily available.This research presents novel lateral displacement and bending moment predictive models for closed and open-ended pipe piles,employing a Genetic Programming(GP)approach.Utilizing a soil dataset extracted from existing literature,comprising 392 data points for both pile types embedded in cohesionless soil and subjected to earthquake loading,the study intentionally limited input parameters to three features to enhance model simplicity:Standard Penetration Test(SPT)corrected blow count(N60),Peak Ground Acceleration(PGA),and pile slenderness ratio(L/D).Model performance was assessed via coefficient of determination(R^(2)),Root Mean Squared Error(RMSE),and Mean Absolute Error(MAE),with R^(2) values ranging from 0.95 to 0.99 for the training set,and from 0.92 to 0.98 for the testing set,which indicate of high accuracy of prediction.Finally,the study concludes with a sensitivity analysis,evaluating the influence of each input parameter across different pile types.
文摘We determined the effects of adhesive type and loose tenon dimensions (length and thickness) on bending strength of T-shaped mor- tise and loose-tenon joints. Polyvinyl acetate (PVAc) and two-component polyurethane (PU) adhesives were used to construct joint specimens. The bending moment capacity of joints increased significantly with increased length and thickness of the loose tenon. Bending moment capacity of joints constructed with PU adhesive was approximately 13% higher than for joints constructed with PVAc adhesive. We developed a predictive equation as a function of adhesive type and loose tenon dimensions to estimate the strength of the joints constructed of oriental beech (Fagus orientalis L.) under uniaxial bending load.
文摘We investigated bending moment resistance under diagonal compression load of comer doweled joints with plywood members. Joint members were made of ll-ply hardwood plywood of 19 mm thickness. Dowels were fabricated of Beech and Hornbeam species. Their diameters (6, 8 and 10 mm) and depths of penetration (9, 13 and 17 ram) in joint members were chosen variables in our experiment. By increasing the connector's diameter from 6 to 8 mm, the bending moment resistance under diagonal compressive load was increased, while it decreased when the diameter was increased from 8 to 10 mm. The bending moment re- sistance under diagonal compressive load was increased by increasing the dowel's depth of penetration. Joints made with dowels of Beech had higher resistance than dowels of Hornbeam. Highest resisting moment (45.18 N.m) was recorded for joints assembled with 8 mm Beech dowels penetrating 17 mm into joint members Lowest resisting moment (13.35 N.m) was recorded for joints assembled with 6 mm Hornbeam dowels and penetrating 9 mm into joint members.
基金supported by the Croatian Science Foundation under the project 8658
文摘The wave-induced vertical ship motions and bending moments of a double hull-oil tanker in realistic flooding conditions are studied. The scenarios investigated are represented by water ingress into the starboard ballast tanks for collision damage cases and both starboard and portside ballast tanks for grounding situations. Seakeeping computations are performed for eight damage scenarios and for the intact condition, each corresponding to different changes in displacement, trim, and heel. For each of the damage conditions, transfer functions of vertical motions and loads are calculated using a potential linear 3 D panel hydrodynamic code in the frequency domain that includes effect of the motion of the water in flooded tanks. A MATLAB code is developed to facilitate automated hydrodynamic simulation of many damage scenarios. Verification of seakeeping results is performed by comparing transfer functions with results of the previous study. Wave-induced vertical responses of damaged ship are then compared to those of intact ship using two spectral-based methods originating from uncertainty analysis of wave loads, which are convenient tools to assess consequences of damage on short-term ship responses. Generally, observed trend is that vertical wave-induced responses of damaged ship converge toward those of intact ship with increasing wave period. Fairly small differences between responses of asymmetrically damaged ship with respect to the symmetrical incoming wave directions are found. The results of the study are an efficient method for seakeeping assessment of damaged oil tankers and the framework for evaluating consequences of damage scenarios, heading angles, and sea conditions on seakeeping responses of damaged ships.The results can be used to decide if the intact ship model can be used instead of the damaged one for the emergency response procedure or for the risk assessment studies when modeling and computational time represent important limitations.
基金Sponsored by the Subsidization Plan for Outstanding Young Teacher of Ministry of Education
文摘In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, preflex beam with alterative web depth and preflex beam with aherative steel flange thickness, are dis- cussed on how to achieve the equivalent moment of inertia and Young' s modulus. Additionally, methods of cal- culating the equivalent bending stiffness and post-cracking deflection are proposed. Results of the experiments on 6 beams agree well with the theoretical analysis, which proves the correctness of the proposed formulas.
基金Project(51164030)supported by the National Natural Science Foundation of China
文摘For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.
基金The National Natural Science Foundation of China under contract Nos 41976064,91958211,41890813,91858207,91628301,U1606401,41976066 and 41706056the Programs of the Chinese Academy of Sciences under contract Nos Y4SL021001,QYZDY-SSW-DQC005 and 133244KYSB20180029+1 种基金the National Key Research and Development Program of China under contract Nos2018YFC0309800 and 2018YFC0310100the China Ocean Mineral Resources R&D Association under contract No.DY135-S2-1-04
文摘We conducted a detailed analysis of along-trench variations in the flexural bending of the subducting Pacific Plate at the Tonga-Kermadec Trench.Inversions were conducted to obtain best-fitting solutions of trench-axis loadings and variations in the effective elastic plate thickness for the analyzed flexural bending profiles.Results of the analyses revealed significant along-trench variations in plate flexural bending:the trench relief(W0)of 1.9 to 5.1 km;trench-axis vertical loading(V0)of-0.5×10^12 to 2.2×10^12 N/m;axial bending moment(M0)of 0.1×10^17 to 2.2×10^17 N;effective elastic plate thickness seaward of the outer-rise region(Te^M)of 20 to 65 km,trench-ward of the outer-rise(Te^M)of 11 to 33 km,and the transition distance(Xr)of 20 to 95 km.The Horizon Deep,the second greatest trench depth in the world,has the greatest trench relief(W0 of 5.1km)and trench-axis loading(V0 of 2.2×10^12N/m);these values are only slightly smaller than that of the Challenger Deep(W0 of 5.7km and V0 of 2.9×10^12N/m)and similar to that of the Sirena Deep(W0 of 5.2 km and V0 of 2.0×10^12 N/m)of the Mariana Trench,suggesting that these deeps are linked to great flexural bending of the subducting plates.Analyses using three independent methods,i.e.,the/inversion,the flexural curvature/yield strength envelope analysis,and the elasto-plastic bending model with normal faults,all yielded similar average Te reduction of 28%-36% and average Te reduction area S△Te of 1195-1402 km^2 near the trench axis.The calculated brittle yield zone depth from the flexural curvature/yield strength envelope analysis is also consistent with the distribution of the observed normal faulting earthquakes.Comparisons of the Manila,Philippine,Tonga-Kermadec,Japan,and Mariana Trenches revealed that the average values Te^M of Te^M and both in general increase with the subducting plate age.
基金the financial help and technical support that King Abdulaziz University provided for this research work
文摘Bulge is a defect that causes geometrical inaccuracy and premature failure in the innovative incremental sheet forming (ISF) process. This study has two-fold objectives:(1) knowing the bulging behavior of a Cu clad tri-layered steel sheet as a function of forming conditions, and (2) analyzing the bending effect on bulging in an attempt to identify the associated mechanism. A series of ISF tests and bending analysis are performed to realize these objectives. From the cause-effect analysis, it is found that bulge formation in the layered sheet is sensitive to forming conditions in a way that bulging can be minimized utilizing annealed material and performing ISF with larger tool diameter and step size. The bending under tension analysis reveals that the formation of bulge is an outgrowth of bending moment that the forming tool applies on the sheet during ISF. Furthermore, the magnitude of bending moment depending upon the forming conditions varies from 0.046 to 10.24 N·m/m and causes a corresponding change in the mean bulge height from 0.07 to 0.91 mm. The bending moment governs bulging in layered sheet through a linear law. These findings lead to a conclusion that the bulge defect can be overcome by controlling the bending moment and the formula proposed can be helpful in this regards.
文摘The bending moment acting on the overhung shaft of a gas-sparged vessel stirred by a Rushton turbine,as one of the results of fluid and structure interactions in stirred vessels,was measured using a moment sensor equipped with digital telemetry.An analysis of the shaft bending moment amplitude shows that the amplitude distribution of the bending moment,which indicates the elasticity nature of shaft material against bending deformation,follows the Weibull distribution.The trends of amplitude mean,standard deviation and peak deviation characteristics manifest an "S" shape versus gas flow.The "S" trend of the relative mean bending moment over gas flow rate,depending on the flow regime in gas-liquid stirred vessels,resulted from the competition among the nonuniformity of bubbly flow around the impeller,the formation of gas cavities behind the blades,and the gas direct impact on the impeller when gas is introduced.A further analysis of the bending moment power spectral density shows that the rather low frequency and speed frequency are evident.The low-frequency contribution to bending moment fluctuation peaks in the complete dispersion regime.
文摘The purpose of the present study is to investigate the influence of different types of shear connectors on mechanical behavior of composite steel and concrete girders under negative bending moment. Two overturned simply supported steel-concrete composite girders with different shear connectors including studs and PBLs (perfo-bond strips) were tested under point load in the mid-span. Based on the experimental observations, a three-dimensional FE (finite element) model capable of analyzing the composite girders subjected to negative bending moment was built. Load and deformation response, concrete initial cracking and composite girder ultimate load bearing capacity, strain development process of reinforcing bars before and after concrete cracking were observed in the test and compared with the numerical values. Results predicted by this modeling method are in good agreement with those obtained from the tests. Furthermore, the %rack closure" or "through crack" load were recorded by π-ganges in the tests and compared with the code-specified ultimate load.
基金Supported by the National Key R&D Program of China(2017YFB0306704)the National Natural Science Foundation of China(21676007)
文摘The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines(half circular blades disk turbine, half elliptical blades disk turbine, and parabolic blades disk turbine) were experimentally measured by a customized moment sensor. The results show that the amplitude distribution of torque can be fitted by a symmetric bimodal distribution for disk turbines, and generally the distribution is more dispersive as the blade curvature or the gas flow rate increases. The amplitude distribution of shaft bending moment can be fitted by an asymmetric Weibull distribution for disk turbines. The relative shaft bending moment manifests a "rising-falling-rising" trend over the gas flow number, which is a corporate contribution of the unstable gas–liquid flow around the impeller, the gas cavities behind the blades, and the direct impact of gas on the impeller. And the "falling" stage is greater and lasts wider over the gas flow number for Rushton turbine than for the curved-blade disk turbines.
文摘We determined the effects of the penetration depth and spline material and composite material type as well as joining method on bending moment resistance under diagonal compression and tension in common wood panel structures. Composite materials were laminated medium density fiberboard (MDF) and particleboard. Joining methods were butt and miter types. Spline materials were high density fiberboard (HDF). The penetration depths of plywood, wood (Carpinus betolus) and spline were 8, 11 and 14 mm. The results showed that in both diagonal com- pression and tension, MDF joints are stronger than particleboard joints, and the bending moment resistance under compression is higher compared with that in tension. The highest bending moment resistance under tension was shown in MDF, butt joined using plywood spline with 8 mm penetration depth, whereas under compression bending moment resistance was seen in MDF, miter joined with the HDF spline of 14 mm penetration depth.
文摘The paper is dedicated to the development of the theory of orthotropic thick plates with consideration of internal forces, moments and bimoments. The equations of motion of a plate are described by two systems of six equations. New equations of motion of the plate and the boundary conditions relative to displacements, forces, moments, and bimoments are given. As an example, the problems of free and forced oscillations of a thick plate are considered under the effect of sinusoidal periodic load. The problem is solved by Finite Difference Method. Eigenfrequencies of the plate are determined, numeric maximum values of displacements, forces and moments of the plate are obtained depending on the frequency of external force. It is shown that when the value of the frequency of external effect approaches the eigenfrequency, there occurs an increase in displacement, force and moment values;that testifies a gradual transition of the motion of plate points into the resonant mode.
文摘In this paper, by using adequate stress-strain relationship, mesh elements, boundary conditions and loading conditions, the finite element ANSYS analysis on the behavior of circular tubes subjected to symmetrical cyclic bending with or without external pressure is discussed. The behavior includes the moment-curvature and ovalization-curvature relationships. In addition, the calculated ovalizations at two different sections, middle and right cross-sections, are also included. Experimental data for 6061-T6 aluminum alloy tubes subjected to cyclic bending with or without external pressure were compared with the ANSYS analysis. It has been shown that the analysis of the elastoplatic moment-curvature relationship and the symmetrical, ratcheting and increasing ovalization-curvature relationship is in good agreement with the experimental data.
基金National Natural Science Foundation(No.19732020)the Doctoral Research Foundation of China
文摘Instead of the biharmonic type equation, a set of new governing equations and solving method for circular sector plate bending is presented based on the analogy between plate bending and plane elasticity problems. So the Hamiltonian system can also be applied to plate bending problems by introducing bending moment functions. The new method presents the analytical solution for the circular sector plate. The results show that the new method is effective.
基金Supported by the Major Program of the National Natural Science Foundation of China(10632070)
文摘Transport of nanoparticles and coagulation is simulated with the combination of CFD in a circular bend. The Taylor-expansion moment method(TEMOM)is employed to study dynamics of nanoparticles with Brownian motion,based on the flow field from numerical simulation.A fully developed flow pattern in the present simulation is compared with previous numerical results for validating the model and computational code.It is found that for the simulated particulate flow system,the particle mass concentration,number concentration,particle polydispersity, mean particle diameter and geometric standard deviation over cross-section increase with time.The distribution of particle mass concentration at different time is independent of the initial particle size.More particles are concen-trated at outer edge of the bend.Coagulation plays more important role at initial stage than that in the subsequent period.The increase of Reynolds number and initial particle size leads to the increase of particle number concentration.The particle polydispersity,mean particle diameter and geometric standard deviation increase with decreasing Reynolds number and initial particle size.