The buckling response of pipe-in-pipe(PIP)systems subjected to bending is investigated in this paper. A set of parameterized models are established to explore the bending characteristics of the PIP systems through eig...The buckling response of pipe-in-pipe(PIP)systems subjected to bending is investigated in this paper. A set of parameterized models are established to explore the bending characteristics of the PIP systems through eigenvalue buckling analysis and nonlinear post-buckling analysis. The results show that the length of PIP systems and the height of centralizers are the most significant factors that influence the buckling moment, ultimate bending moment and buckling mode; the other geometric characteristics, such as initial geometric imperfection and friction between centralizers and outer pipes, evidently influence the post-buckling path and ductility of PIPs; the equivalent bending stiffness is dependent on the length and centralizers. Moreover, the range of equivalent bending stiffness is also discussed.展开更多
Twisting chirality is widely observed in artificial and natural materials and structures at different length scales. In this paper, we theoretically investigate the effect of twisting chiral morphology on the mechanic...Twisting chirality is widely observed in artificial and natural materials and structures at different length scales. In this paper, we theoretically investigate the effect of twisting chiral morphology on the mechanical properties of elas- tic beams by using the Timoshenko beam model. Particular attention is paid to the transverse bending and axial buckling of a pre-twisted rectangular beam. The analytical solution is first derived for the deflection of a clamped-free beam under a uniformly or periodically distributed transverse force. The critical buckling condition of the beam subjected to its self- weight and an axial compressive force is further solved. The results show that the twisting morphology can significantly improve the resistance of beams to both transverse bending and axial buckling. This study helps understand some phenomena associated with twisting chirality in nature and provides inspirations for the design of novel devices and structures.展开更多
An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented. Based on the expression of magnetic force f...An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented. Based on the expression of magnetic force from the variational principle of ferromagnetic plates, the buckling and bending theory of thin plates, the Mises yield criterion and the increment theory for plastic deformation, we establish a numerical code to quantitatively simulate the behaviors of the nonlinearly multi-fields coupling problems by the finite element method. Along with the phenomena of buckling/snapping and bending, or the characteristic curve of deflection versus magnitude of applied magnetic fields being numerically displayed, the critical loads of buckling/snapping, and the influences of plastic deformation and the width of plate on these critical loads, the plastic regions expanding with the magnitude of applied magnetic field, as well as the evolvement of deflection configuration of the plate are numerically obtained in a case study.展开更多
Cross-sectional ovalization of thin-walled circular steel tube because of large plastic bending,also known as the Brazier effect,usually occurs during the initial stage of tube′s continuous rotary straightening proce...Cross-sectional ovalization of thin-walled circular steel tube because of large plastic bending,also known as the Brazier effect,usually occurs during the initial stage of tube′s continuous rotary straightening process.The amount of ovalization,defined as maximal cross section flattening,is an important technical parameter in tube′s straightening process to control tube′s bending deformation and prevent buckling.However,for the lack of special analytical model,the maximal section flattening was determined in accordance with the specified charts developed by experienced operators on the basis of experimental data;thus,it was inevitable that the localized buckling might occur during some actual straightening operations.New normal strain component formulas were derived based on the thin shell theory.Then,strain energy of thin-walled tube(per unit length)was obtained using the elastic-plastic theory.A rational model for predicting the maximal section flattening of the thin-walled circular steel tube under its straightening process was presented by the principle of minimum potential energy.The new model was validated by experiments and numerical simulations.The results show that the new model agrees well with the experiments and the numerical simulations with error of less than 10%.This new model was expected to find its potential application in thin-walled steel tube straightening machine design.展开更多
基金Supported by the National Basic Research Program of China("973" Program,No.2014CB046801)
文摘The buckling response of pipe-in-pipe(PIP)systems subjected to bending is investigated in this paper. A set of parameterized models are established to explore the bending characteristics of the PIP systems through eigenvalue buckling analysis and nonlinear post-buckling analysis. The results show that the length of PIP systems and the height of centralizers are the most significant factors that influence the buckling moment, ultimate bending moment and buckling mode; the other geometric characteristics, such as initial geometric imperfection and friction between centralizers and outer pipes, evidently influence the post-buckling path and ductility of PIPs; the equivalent bending stiffness is dependent on the length and centralizers. Moreover, the range of equivalent bending stiffness is also discussed.
基金supported by the National Natural Science Foundation of China(31270989 and 11372162)the 973 Program of MOST(2010CB631005 and 2012CB934001)Tsinghua University(20121087991)
文摘Twisting chirality is widely observed in artificial and natural materials and structures at different length scales. In this paper, we theoretically investigate the effect of twisting chiral morphology on the mechanical properties of elas- tic beams by using the Timoshenko beam model. Particular attention is paid to the transverse bending and axial buckling of a pre-twisted rectangular beam. The analytical solution is first derived for the deflection of a clamped-free beam under a uniformly or periodically distributed transverse force. The critical buckling condition of the beam subjected to its self- weight and an axial compressive force is further solved. The results show that the twisting morphology can significantly improve the resistance of beams to both transverse bending and axial buckling. This study helps understand some phenomena associated with twisting chirality in nature and provides inspirations for the design of novel devices and structures.
基金Project supported by the National Natural Sciences Fund of China(Nos.10302009 and 10672070)the Natural Sciences Fund of Gansu Province(3ZS051-A25-012)the Excellent Doctors' Fund of Lanzhou University
文摘An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented. Based on the expression of magnetic force from the variational principle of ferromagnetic plates, the buckling and bending theory of thin plates, the Mises yield criterion and the increment theory for plastic deformation, we establish a numerical code to quantitatively simulate the behaviors of the nonlinearly multi-fields coupling problems by the finite element method. Along with the phenomena of buckling/snapping and bending, or the characteristic curve of deflection versus magnitude of applied magnetic fields being numerically displayed, the critical loads of buckling/snapping, and the influences of plastic deformation and the width of plate on these critical loads, the plastic regions expanding with the magnitude of applied magnetic field, as well as the evolvement of deflection configuration of the plate are numerically obtained in a case study.
基金Item Sponsored by National Natural Science Foundation of China(51374063)Fundamental Research Funds for the Central Universities of China(N140303009)
文摘Cross-sectional ovalization of thin-walled circular steel tube because of large plastic bending,also known as the Brazier effect,usually occurs during the initial stage of tube′s continuous rotary straightening process.The amount of ovalization,defined as maximal cross section flattening,is an important technical parameter in tube′s straightening process to control tube′s bending deformation and prevent buckling.However,for the lack of special analytical model,the maximal section flattening was determined in accordance with the specified charts developed by experienced operators on the basis of experimental data;thus,it was inevitable that the localized buckling might occur during some actual straightening operations.New normal strain component formulas were derived based on the thin shell theory.Then,strain energy of thin-walled tube(per unit length)was obtained using the elastic-plastic theory.A rational model for predicting the maximal section flattening of the thin-walled circular steel tube under its straightening process was presented by the principle of minimum potential energy.The new model was validated by experiments and numerical simulations.The results show that the new model agrees well with the experiments and the numerical simulations with error of less than 10%.This new model was expected to find its potential application in thin-walled steel tube straightening machine design.