Ritz method is an effective way widely used to analyze the transverse bending of thin rectangular plates. Its accuracy depends completely on the basis functions selected. This paper selects the superposition of sine s...Ritz method is an effective way widely used to analyze the transverse bending of thin rectangular plates. Its accuracy depends completely on the basis functions selected. This paper selects the superposition of sine series with polynomials as the basis functions of thin rectangular plates. The calculating formulae are not only simple and easily programmed, but also have high accuracy. Finally, two numerical results are given and compared with those obtained by the classical method.展开更多
The cubic B-splines taken as trial function, the large deflection of a circular plate with arbitrarily variable thickness,as well as the buckling load, have been calculated by the method of point collocation. The supp...The cubic B-splines taken as trial function, the large deflection of a circular plate with arbitrarily variable thickness,as well as the buckling load, have been calculated by the method of point collocation. The support can be elastic. Loads imposed can be polynomial distributed loads, uniformly distributed radial forces or moments along the edge respectively or their combinations. Convergent solutions can still be obtained by this method under the load whose value is in great excess of normal one. Under the action of the uniformly distributed loads, linear solutions of circular plates with linearly or quadratically variable thickness are compared with those obtained by the parameter method. Buckling of a circular plate with identical thickness beyond critical thrust is compared with those obtained by the power series method.展开更多
The buckling and large deflection behaviors of axis-symmetric radially functionally graded (RFG) ring-stiffened circular plates are investigated by the dynamic relaxation (DR) method combined with the finite diffe...The buckling and large deflection behaviors of axis-symmetric radially functionally graded (RFG) ring-stiffened circular plates are investigated by the dynamic relaxation (DR) method combined with the finite difference discretization technique. The material properties of the constituent components of the RFG plate are assumed to vary continuously according to the Mori-Tanalka distribution along the radial direction. The nonlinear governing equations are obtained in the incremental form based on the firstorder shear deformation plate theory (FSDT) and the von Karman relations for large deflection. In the buckling analysis, an external in-plane load is applied to the plate in- crementally so that, in each load-step, the incremental form of the governing equations can be solved by a numerical code prepared based on the DR method. After converging the DR code in the first increment, the latter load-step is added to the previous one, and the program is repeated again. The critical buckling load is determined from the compressive load-displacement curve obtained by solving the incremental form of the governing equations. Based on the present incremental form of formulation, a bending analysis can also be conducted if the whole load is applied simultaneously. Finally, a detailed parametric study is carried out to investigate the influences of various boundary conditions, grading indices, thickness-to-radius ratios, stiffener's positions and depths on the critical buckling load, and displacements and stresses resulted from the bending analysis. It is observed that the effect of the stiffener on the results is much greater in the functionally graded plate with higher material grading indices. The results also reveal that, by increasing the depth of the stiffer, the values of ascending the critical buckling load are approximately identical for both simply supported and clamped boundary conditions.展开更多
By using the simplified Reissner's equation of axisymmetric shells of revolution, the nonlinear bending of a corrugated annular plate with a large boundary corrugation and a nondeformable rigid body at the cente...By using the simplified Reissner's equation of axisymmetric shells of revolution, the nonlinear bending of a corrugated annular plate with a large boundary corrugation and a nondeformable rigid body at the center under compound load are investigated. The nonlinear boundary value problem of the corrugated diaphragm reduces to the nonlinear integral equations by applying the method of Green's function. To solve the integral equations, a so_called interpolated parameter important to prevent divergence is introduced into the iterative format. Computation shows that when loads are small, any value of interpolated parameter can assure the convergence of iteration. Interpolated parameter equal or almost equal to 1 yields a faster convergence rate; when loads are large, interpolated parameter cannot be taken too large in order to assure convergence. The characteristic curves of the corrugated diaphragm for different load combinations are given. The obtained characteristic curves are available for reference to design. It can be concluded that the deflection is larger when the diaphragm is acted by both uniform load and concentrated load than when it is acted only by uniform load. The solution method can be applied to corrugated shells of arbitrary diametral sections.展开更多
Study on the dynamic response, and especially the nonlinear dynamic response of stiffened plates is complicated by their discontinuity and inhomogeneity. The finite element method (FEM) and the finite strip method are...Study on the dynamic response, and especially the nonlinear dynamic response of stiffened plates is complicated by their discontinuity and inhomogeneity. The finite element method (FEM) and the finite strip method are usually adopted in their analysis. Although many useful conclusions have been obtained, the computational cost is enormous. Based on some assumptions, the dynamic plastic response of clamped stiffened plates with large deflections was theoretically investigated herein by a singly symmetric beam model. Firstly, the deflection conditions that a plastic string must satisfy were obtained by the linearized moment-axial force interaction curve for singly symmetric cross sections and the associated plastic flow rule. Secondly, the possible motion mechanisms of the beam under different load intensity were analysed in detail. For structures with plastic deformations, a simplified method was then given that the arbitrary impact load can be replaced equivalently by a rectangular pulse. Finally, to confirm the validity of the proposed method, the dynamic plastic response of a one-way stiffened plate with four fully clamped edges was calculated. The theoretical results were in good agreement with those of FEM. It indicates that the present calculation model is easy and feasible, and the equivalent substitution of load almost has no influence on the final deflection.展开更多
Basic equations for large deflection theory of thin orthotropic circular plate on elastic foundation with variable thickness under uniform pressure are derived in this paper. The second opproximation solutions are obt...Basic equations for large deflection theory of thin orthotropic circular plate on elastic foundation with variable thickness under uniform pressure are derived in this paper. The second opproximation solutions are obtained by means of the modified iteration method. The relation curves of the nondimensional loading and foe deflection, as to the differential ε and μrθ and λ are shown in Figs. 2, 3, 4. In special circumstance, the results are in accordance with those in [1], [6].展开更多
In this paper, the modified method of multiple scales is applied to study the bending problems for circular thin plate with large deflection under the hinged and simply supported edge conditions. Theseries solutions a...In this paper, the modified method of multiple scales is applied to study the bending problems for circular thin plate with large deflection under the hinged and simply supported edge conditions. Theseries solutions are constructed, the boundary layer effects are analysed and their asymptotics are proved.展开更多
In this paper, Von Karman's set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection bein...In this paper, Von Karman's set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection being taken as a perturbation parameter. These sets of linear equations are solved by the spline finite-point (SFP) method and by the spline finite element (SFE) method. The solutions for rectangular plates having any length-to-width ratios under a uniformly distributed load and with various boundary conditions are presented, and the analytical formulas for displacements and deflections are given in the paper. The computer programs are worked out by ourselves. Comparison of the results with those in other papers indicates that the results of this paper are satisfactorily better.展开更多
In this paper, applying the method of reciprocal theorem, we give the distributions of the amplitude of bending moments along clamped edges and the amplitude of deflections along free edges of rectangular plates with ...In this paper, applying the method of reciprocal theorem, we give the distributions of the amplitude of bending moments along clamped edges and the amplitude of deflections along free edges of rectangular plates with two adjacent clamped edges under harmonic distributed and concentrated loads.展开更多
By using the modified iteration method of large deflection theory of plates with variable thichness[1], we solve the problem of circular plates with variable thickness subjected to combined loads under the boundary co...By using the modified iteration method of large deflection theory of plates with variable thichness[1], we solve the problem of circular plates with variable thickness subjected to combined loads under the boundary conditions of the clamped edges and get comparatively more accurate second-order approximate analytical solution. If the results of this paper are degraded into the special cases, the results coinciding with those of papers [1,2] can be obtained. In this paper, the characteristic curves are plotted and some comparisons are made. The results of this paper are satisfactory.展开更多
A new technique for solving large deflection problem of circular plates flexural non-axisymmetrically is proposed in this paper. The large deflection problem of a circular plate with built-in edge under non-axisymmetr...A new technique for solving large deflection problem of circular plates flexural non-axisymmetrically is proposed in this paper. The large deflection problem of a circular plate with built-in edge under non-axisymmetrical load is taken as an example to clarify the principle and procedure of the technique mentioned here. The technique given here can also be used to solve large deflection problem of circular plates under other non-axisymmetrical loads and boundary conditions.展开更多
The free and forced vibration of large deformation composite plate embedded with shape memory alloy (SMA) fibers is investigated. A thermo-mechanical constitutive equation of SMA proposed by Brinson et al. is employ...The free and forced vibration of large deformation composite plate embedded with shape memory alloy (SMA) fibers is investigated. A thermo-mechanical constitutive equation of SMA proposed by Brinson et al. is employed and the constitutive equations for evaluation of the properties of a hybrid SMA composite laminate are obtained. Based on the nonlinear theory of symmetrically laminated anisotropic plates, the governing equations of flexural vibration in terms of displacement and stress functions are derived. The Galerkin method has been used to convert the original partial differential equation into a nonlinear ordinary differential equation, which is then solved with harmonic balance method. The numerical results show that the relationship between nonlinear natural frequency ratio and temperature for the nonlinear plate has similar characteristics compared with that of the linear one, and the effects of temperature on forced response behavior during phase transformation from Martensite to Austenite are significant. The effects of the volume fraction of the SMA fiber, aspect ratio and free vibration amplitude on the dynamical behavior of the plate are also discussed.展开更多
Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane fo...Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane forces are important.The final deflection of a simply -supported circular rigid-plastic plate loaded by a uniformly distributed impulse is obtained.In comparison with other approximate solutions, the present results are found to be simpler and in better agreement with the corresponding experimental values reoorded by Florence.展开更多
With the terms of the exact series solution taken as trial functions, the method of point collocation was used to calculate the large deflection of a circular plate. The axisymmetrical bending formulae were developed ...With the terms of the exact series solution taken as trial functions, the method of point collocation was used to calculate the large deflection of a circular plate. The axisymmetrical bending formulae were developed for the calculation of a circular plate subjected to polynomial distributed loads, a concentrated load at the center, uniform radial forces and moments along the edge or their combinations. The support may be elastic. The buckling load was calculated. Under action of uniformly distributed load, central load or their compound load, solutions were compared with those obtained by other methods. Buckling beyond critical thrust was compared with that calculated by the power series method. The method presented in this paper has advantages of wide convergent range, high precision and short computing time. Moreover, the computing time is nearly independent of the complexity of the loads.展开更多
In this paper, a nonlinear solution is first presented for a circular sandwich plate with the flexure rigidity of the face layers taken into account. In solving the nonlinear bending equations, a modified power series...In this paper, a nonlinear solution is first presented for a circular sandwich plate with the flexure rigidity of the face layers taken into account. In solving the nonlinear bending equations, a modified power series method is proposed. The uniformly distributed loading and the clamped but sliding boundary condition are also assumed. Then our results are compared with those from Liu Ren-huai and Shi-Yun-fang[15]. The present solution can be used ax a more accurate basis in engineering applications.展开更多
The nonlinear free vibrations of the elastic circular thin plate with large amplitude taking radial force of inertia into account are investigated by using method similar to modified iterative method.The algorithm and...The nonlinear free vibrations of the elastic circular thin plate with large amplitude taking radial force of inertia into account are investigated by using method similar to modified iterative method.The algorithm and formulas finding its approximate analytical solution are provided,and the solution behaviors are also discussed through the calculating example.展开更多
Cubic B-spline taken as trial function, the nonlinear bending of a circular sandwich plate was calculated by the method of point collocation. The support could be elastic. A sandwich plate was assumed to be Reissner m...Cubic B-spline taken as trial function, the nonlinear bending of a circular sandwich plate was calculated by the method of point collocation. The support could be elastic. A sandwich plate was assumed to be Reissner model. The formulae were developed for the calculation of a circular sandwich plate subjected to polynomial distributed loads, uniformly distributed moments, radial pressure or radial prestress along the edge and their combination. Buckling load was calculated for the first time by nonlinear theory. Under action of uniformly distributed loads, results were compared with that obtained by the power series method. Excellences of the program written by the spline collocation method are wide convergent range, high precision and universal.展开更多
Based on the results by Wang,in this paper, the iterative method is presented for the study of large deflection nonlinear problem of laminated composite shallow shells and plates. The rectangular laminated composite s...Based on the results by Wang,in this paper, the iterative method is presented for the study of large deflection nonlinear problem of laminated composite shallow shells and plates. The rectangular laminated composite shallow shells have been analyzed. The results have been compared with the small deflection linear analytical solution and finite element nonlinear solution. The results proved that the solution coincide with small deflection linear analytical solution in the condition of the low loads and finite element nonlinear solution in the condition of the high loads.展开更多
In this paper,applying the method of the reciprocal theorem,we give the stationary solutions of the forced vibration of cantilever rectangular plates under uniformly distributed harmonic load and concentrated harmonic...In this paper,applying the method of the reciprocal theorem,we give the stationary solutions of the forced vibration of cantilever rectangular plates under uniformly distributed harmonic load and concentrated harmonic load acting at any point of the plates,the figures and tables of number value of bending moment and the deflection amplitudes as well.展开更多
New developments have been made on the applications of the differential quadrature(DQ)method to analysis of structural problems recently.The method is used to obtain solutions of large deflections, membrane and bendin...New developments have been made on the applications of the differential quadrature(DQ)method to analysis of structural problems recently.The method is used to obtain solutions of large deflections, membrane and bending stresses of circular plates with movable and immovable edges under uniform pressures or a central point load.The shortcomings existing in the earlier analysis by the DQ method have been overcome by a new approach in applying the boundary conditions. The accuracy and the efficiency of the newly developed method for solving nonlinear problems are demonstrated.展开更多
文摘Ritz method is an effective way widely used to analyze the transverse bending of thin rectangular plates. Its accuracy depends completely on the basis functions selected. This paper selects the superposition of sine series with polynomials as the basis functions of thin rectangular plates. The calculating formulae are not only simple and easily programmed, but also have high accuracy. Finally, two numerical results are given and compared with those obtained by the classical method.
文摘The cubic B-splines taken as trial function, the large deflection of a circular plate with arbitrarily variable thickness,as well as the buckling load, have been calculated by the method of point collocation. The support can be elastic. Loads imposed can be polynomial distributed loads, uniformly distributed radial forces or moments along the edge respectively or their combinations. Convergent solutions can still be obtained by this method under the load whose value is in great excess of normal one. Under the action of the uniformly distributed loads, linear solutions of circular plates with linearly or quadratically variable thickness are compared with those obtained by the parameter method. Buckling of a circular plate with identical thickness beyond critical thrust is compared with those obtained by the power series method.
文摘The buckling and large deflection behaviors of axis-symmetric radially functionally graded (RFG) ring-stiffened circular plates are investigated by the dynamic relaxation (DR) method combined with the finite difference discretization technique. The material properties of the constituent components of the RFG plate are assumed to vary continuously according to the Mori-Tanalka distribution along the radial direction. The nonlinear governing equations are obtained in the incremental form based on the firstorder shear deformation plate theory (FSDT) and the von Karman relations for large deflection. In the buckling analysis, an external in-plane load is applied to the plate in- crementally so that, in each load-step, the incremental form of the governing equations can be solved by a numerical code prepared based on the DR method. After converging the DR code in the first increment, the latter load-step is added to the previous one, and the program is repeated again. The critical buckling load is determined from the compressive load-displacement curve obtained by solving the incremental form of the governing equations. Based on the present incremental form of formulation, a bending analysis can also be conducted if the whole load is applied simultaneously. Finally, a detailed parametric study is carried out to investigate the influences of various boundary conditions, grading indices, thickness-to-radius ratios, stiffener's positions and depths on the critical buckling load, and displacements and stresses resulted from the bending analysis. It is observed that the effect of the stiffener on the results is much greater in the functionally graded plate with higher material grading indices. The results also reveal that, by increasing the depth of the stiffer, the values of ascending the critical buckling load are approximately identical for both simply supported and clamped boundary conditions.
文摘By using the simplified Reissner's equation of axisymmetric shells of revolution, the nonlinear bending of a corrugated annular plate with a large boundary corrugation and a nondeformable rigid body at the center under compound load are investigated. The nonlinear boundary value problem of the corrugated diaphragm reduces to the nonlinear integral equations by applying the method of Green's function. To solve the integral equations, a so_called interpolated parameter important to prevent divergence is introduced into the iterative format. Computation shows that when loads are small, any value of interpolated parameter can assure the convergence of iteration. Interpolated parameter equal or almost equal to 1 yields a faster convergence rate; when loads are large, interpolated parameter cannot be taken too large in order to assure convergence. The characteristic curves of the corrugated diaphragm for different load combinations are given. The obtained characteristic curves are available for reference to design. It can be concluded that the deflection is larger when the diaphragm is acted by both uniform load and concentrated load than when it is acted only by uniform load. The solution method can be applied to corrugated shells of arbitrary diametral sections.
文摘Study on the dynamic response, and especially the nonlinear dynamic response of stiffened plates is complicated by their discontinuity and inhomogeneity. The finite element method (FEM) and the finite strip method are usually adopted in their analysis. Although many useful conclusions have been obtained, the computational cost is enormous. Based on some assumptions, the dynamic plastic response of clamped stiffened plates with large deflections was theoretically investigated herein by a singly symmetric beam model. Firstly, the deflection conditions that a plastic string must satisfy were obtained by the linearized moment-axial force interaction curve for singly symmetric cross sections and the associated plastic flow rule. Secondly, the possible motion mechanisms of the beam under different load intensity were analysed in detail. For structures with plastic deformations, a simplified method was then given that the arbitrary impact load can be replaced equivalently by a rectangular pulse. Finally, to confirm the validity of the proposed method, the dynamic plastic response of a one-way stiffened plate with four fully clamped edges was calculated. The theoretical results were in good agreement with those of FEM. It indicates that the present calculation model is easy and feasible, and the equivalent substitution of load almost has no influence on the final deflection.
文摘Basic equations for large deflection theory of thin orthotropic circular plate on elastic foundation with variable thickness under uniform pressure are derived in this paper. The second opproximation solutions are obtained by means of the modified iteration method. The relation curves of the nondimensional loading and foe deflection, as to the differential ε and μrθ and λ are shown in Figs. 2, 3, 4. In special circumstance, the results are in accordance with those in [1], [6].
文摘In this paper, the modified method of multiple scales is applied to study the bending problems for circular thin plate with large deflection under the hinged and simply supported edge conditions. Theseries solutions are constructed, the boundary layer effects are analysed and their asymptotics are proved.
文摘In this paper, Von Karman's set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection being taken as a perturbation parameter. These sets of linear equations are solved by the spline finite-point (SFP) method and by the spline finite element (SFE) method. The solutions for rectangular plates having any length-to-width ratios under a uniformly distributed load and with various boundary conditions are presented, and the analytical formulas for displacements and deflections are given in the paper. The computer programs are worked out by ourselves. Comparison of the results with those in other papers indicates that the results of this paper are satisfactorily better.
文摘In this paper, applying the method of reciprocal theorem, we give the distributions of the amplitude of bending moments along clamped edges and the amplitude of deflections along free edges of rectangular plates with two adjacent clamped edges under harmonic distributed and concentrated loads.
文摘By using the modified iteration method of large deflection theory of plates with variable thichness[1], we solve the problem of circular plates with variable thickness subjected to combined loads under the boundary conditions of the clamped edges and get comparatively more accurate second-order approximate analytical solution. If the results of this paper are degraded into the special cases, the results coinciding with those of papers [1,2] can be obtained. In this paper, the characteristic curves are plotted and some comparisons are made. The results of this paper are satisfactory.
文摘A new technique for solving large deflection problem of circular plates flexural non-axisymmetrically is proposed in this paper. The large deflection problem of a circular plate with built-in edge under non-axisymmetrical load is taken as an example to clarify the principle and procedure of the technique mentioned here. The technique given here can also be used to solve large deflection problem of circular plates under other non-axisymmetrical loads and boundary conditions.
文摘The free and forced vibration of large deformation composite plate embedded with shape memory alloy (SMA) fibers is investigated. A thermo-mechanical constitutive equation of SMA proposed by Brinson et al. is employed and the constitutive equations for evaluation of the properties of a hybrid SMA composite laminate are obtained. Based on the nonlinear theory of symmetrically laminated anisotropic plates, the governing equations of flexural vibration in terms of displacement and stress functions are derived. The Galerkin method has been used to convert the original partial differential equation into a nonlinear ordinary differential equation, which is then solved with harmonic balance method. The numerical results show that the relationship between nonlinear natural frequency ratio and temperature for the nonlinear plate has similar characteristics compared with that of the linear one, and the effects of temperature on forced response behavior during phase transformation from Martensite to Austenite are significant. The effects of the volume fraction of the SMA fiber, aspect ratio and free vibration amplitude on the dynamical behavior of the plate are also discussed.
基金The project supported by a fund from the National Educational Committee.
文摘Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane forces are important.The final deflection of a simply -supported circular rigid-plastic plate loaded by a uniformly distributed impulse is obtained.In comparison with other approximate solutions, the present results are found to be simpler and in better agreement with the corresponding experimental values reoorded by Florence.
文摘With the terms of the exact series solution taken as trial functions, the method of point collocation was used to calculate the large deflection of a circular plate. The axisymmetrical bending formulae were developed for the calculation of a circular plate subjected to polynomial distributed loads, a concentrated load at the center, uniform radial forces and moments along the edge or their combinations. The support may be elastic. The buckling load was calculated. Under action of uniformly distributed load, central load or their compound load, solutions were compared with those obtained by other methods. Buckling beyond critical thrust was compared with that calculated by the power series method. The method presented in this paper has advantages of wide convergent range, high precision and short computing time. Moreover, the computing time is nearly independent of the complexity of the loads.
基金Project Supported by the Science Fund of the Chinese Academy of Sciences
文摘In this paper, a nonlinear solution is first presented for a circular sandwich plate with the flexure rigidity of the face layers taken into account. In solving the nonlinear bending equations, a modified power series method is proposed. The uniformly distributed loading and the clamped but sliding boundary condition are also assumed. Then our results are compared with those from Liu Ren-huai and Shi-Yun-fang[15]. The present solution can be used ax a more accurate basis in engineering applications.
文摘The nonlinear free vibrations of the elastic circular thin plate with large amplitude taking radial force of inertia into account are investigated by using method similar to modified iterative method.The algorithm and formulas finding its approximate analytical solution are provided,and the solution behaviors are also discussed through the calculating example.
文摘Cubic B-spline taken as trial function, the nonlinear bending of a circular sandwich plate was calculated by the method of point collocation. The support could be elastic. A sandwich plate was assumed to be Reissner model. The formulae were developed for the calculation of a circular sandwich plate subjected to polynomial distributed loads, uniformly distributed moments, radial pressure or radial prestress along the edge and their combination. Buckling load was calculated for the first time by nonlinear theory. Under action of uniformly distributed loads, results were compared with that obtained by the power series method. Excellences of the program written by the spline collocation method are wide convergent range, high precision and universal.
文摘Based on the results by Wang,in this paper, the iterative method is presented for the study of large deflection nonlinear problem of laminated composite shallow shells and plates. The rectangular laminated composite shallow shells have been analyzed. The results have been compared with the small deflection linear analytical solution and finite element nonlinear solution. The results proved that the solution coincide with small deflection linear analytical solution in the condition of the low loads and finite element nonlinear solution in the condition of the high loads.
文摘In this paper,applying the method of the reciprocal theorem,we give the stationary solutions of the forced vibration of cantilever rectangular plates under uniformly distributed harmonic load and concentrated harmonic load acting at any point of the plates,the figures and tables of number value of bending moment and the deflection amplitudes as well.
文摘New developments have been made on the applications of the differential quadrature(DQ)method to analysis of structural problems recently.The method is used to obtain solutions of large deflections, membrane and bending stresses of circular plates with movable and immovable edges under uniform pressures or a central point load.The shortcomings existing in the earlier analysis by the DQ method have been overcome by a new approach in applying the boundary conditions. The accuracy and the efficiency of the newly developed method for solving nonlinear problems are demonstrated.