As an important step enhancing regional innovation, researches on collaborative innovation have attracted much more attention recently. One significant reason is that cities can get excessive benefits while they take ...As an important step enhancing regional innovation, researches on collaborative innovation have attracted much more attention recently. One significant reason is that cities can get excessive benefits while they take collaborative innovation activities. Based on the theories of innovation geography, this paper takes the collaborative innovation of the Yangtze River Delta(YRD) Urban Agglomeration as a case study and measures the collaborative innovation capacity from innovation actors and innovation cities by adopting the catastrophe progression model. Then on this basis, the study depicts the spatial pattern and the benefit allocation of collaborative innovation by using the coupling collaborative degree model and benefit allocation model of collaborative innovation. The results show that:1) The collaborative innovation capacity of cities in the Yangtze River Delta has strengthened largely, while the capacity still is not high enough. Cities with high collaborative innovation capacity are concentrated in Shanghai, the southern part of Jiangsu, and Hangzhou Bay, yet the cooperation of the universities-industries-research institutes need to improve. 2) The spatial pattern of collaborative innovation of the Yangtze River Delta presents several innovation circles, which are in Suzhou-Wuxi-Changzhou Metropolitan Circle, Nanjing Metropolitan Circle, Hangzhou Metropolitan Circle, Ningbo Metropolitan Circle, and Hefei Metropolitan Circle. Shanghai plays the role of the central city of collaborative innovation, while Suzhou, Nanjing, Hangzhou, Ningbo, and Hefei act as sub-central cities. 3) The benefit each city allocated from collaborative innovation activities has increased. However, the allocations of the benefit show that cities with higher innovation capacity have significant advantages in most cases, which lead to serious disparities in space.展开更多
The integrated energy system is an important development direction for achieving energy transformation in the context of the low-carbon development era,and an integrated energy system that uses renewable energy can re...The integrated energy system is an important development direction for achieving energy transformation in the context of the low-carbon development era,and an integrated energy system that uses renewable energy can reduce carbon emissions and improve energy utilization efficiency.The electric power network and the natural gas network are important transmission carriers in the en-ergy field,so the coupling relationship between them has been of wide concern.This paper establishes an integrated energy system considering electricity,gas,heat and hydrogen loads;takes each subject in the integrated energy system as the research object;anal-yses the economic returns of each subject under different operation modes;applies the Shapley value method for benefit allocation;and quantifies the contribution value of the subject to the alliance through different influencing factors to revise the benefit allocation value.Compared with the independent mode,the overall benefits of the integrated energy system increase in the cooperative mode and the benefits of all subjects increase.Due to the different characteristics of different subjects in terms of environmental benefits,collaborative innovation and risk sharing,the benefit allocation is reduced for new-energy subjects and increased for power-to-gas sub-jects and combined heat and power generation units after revising the benefit allocation,to improve the matching degree between the contribution level and the benefit allocation under the premise of increased profit for each subject.The cooperative mode effectively enhances the economic benefits of the system as a whole and individually,and provides a useful reference for the allocation of benefits of integrated energy systems.The analysis shows that the revised benefit distribution under the cooperative model increases by 3.86%,4.08%and 3.13%for power-to-gas subjects,combined heat and power generation units,and new-energy units,respectively,compared with the independent function model.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 41571110)。
文摘As an important step enhancing regional innovation, researches on collaborative innovation have attracted much more attention recently. One significant reason is that cities can get excessive benefits while they take collaborative innovation activities. Based on the theories of innovation geography, this paper takes the collaborative innovation of the Yangtze River Delta(YRD) Urban Agglomeration as a case study and measures the collaborative innovation capacity from innovation actors and innovation cities by adopting the catastrophe progression model. Then on this basis, the study depicts the spatial pattern and the benefit allocation of collaborative innovation by using the coupling collaborative degree model and benefit allocation model of collaborative innovation. The results show that:1) The collaborative innovation capacity of cities in the Yangtze River Delta has strengthened largely, while the capacity still is not high enough. Cities with high collaborative innovation capacity are concentrated in Shanghai, the southern part of Jiangsu, and Hangzhou Bay, yet the cooperation of the universities-industries-research institutes need to improve. 2) The spatial pattern of collaborative innovation of the Yangtze River Delta presents several innovation circles, which are in Suzhou-Wuxi-Changzhou Metropolitan Circle, Nanjing Metropolitan Circle, Hangzhou Metropolitan Circle, Ningbo Metropolitan Circle, and Hefei Metropolitan Circle. Shanghai plays the role of the central city of collaborative innovation, while Suzhou, Nanjing, Hangzhou, Ningbo, and Hefei act as sub-central cities. 3) The benefit each city allocated from collaborative innovation activities has increased. However, the allocations of the benefit show that cities with higher innovation capacity have significant advantages in most cases, which lead to serious disparities in space.
文摘The integrated energy system is an important development direction for achieving energy transformation in the context of the low-carbon development era,and an integrated energy system that uses renewable energy can reduce carbon emissions and improve energy utilization efficiency.The electric power network and the natural gas network are important transmission carriers in the en-ergy field,so the coupling relationship between them has been of wide concern.This paper establishes an integrated energy system considering electricity,gas,heat and hydrogen loads;takes each subject in the integrated energy system as the research object;anal-yses the economic returns of each subject under different operation modes;applies the Shapley value method for benefit allocation;and quantifies the contribution value of the subject to the alliance through different influencing factors to revise the benefit allocation value.Compared with the independent mode,the overall benefits of the integrated energy system increase in the cooperative mode and the benefits of all subjects increase.Due to the different characteristics of different subjects in terms of environmental benefits,collaborative innovation and risk sharing,the benefit allocation is reduced for new-energy subjects and increased for power-to-gas sub-jects and combined heat and power generation units after revising the benefit allocation,to improve the matching degree between the contribution level and the benefit allocation under the premise of increased profit for each subject.The cooperative mode effectively enhances the economic benefits of the system as a whole and individually,and provides a useful reference for the allocation of benefits of integrated energy systems.The analysis shows that the revised benefit distribution under the cooperative model increases by 3.86%,4.08%and 3.13%for power-to-gas subjects,combined heat and power generation units,and new-energy units,respectively,compared with the independent function model.