Mo-modified Pd/Al2O3catalysts were prepared by an impregnation method and tested for the catalytic combustion of benzene. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction(XRD), X-ray p...Mo-modified Pd/Al2O3catalysts were prepared by an impregnation method and tested for the catalytic combustion of benzene. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), temperatureprogrammed desorption of NH3(NH3-TPD), H2temperature-programmed reduction(H2-TPR), and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM). The results showed that the addition of Mo effectively improved the activity and stability of the Pd/Al2O3catalyst by increasing the dispersion of Pd active components, changing the partial oxidation state of palladium and increasing the oxygen species concentration on the surface of catalyst. In the case of the Pd-Mo/Al2O3catalyst,benzene conversion of 90% was obtained at temperatures as low as 190°C, which was 45°C lower than that for similar performance with the Pd/Al2O3catalyst. Moreover, the 1.0% Pd-5% Mo/Al2O3catalyst was more active than the 2.0% Pd/Al2O3catalyst. It was concluded that Pd and Mo have a synergistic effect in benzene catalytic combustion.展开更多
Pt/FeSnO(OH)_5 was synthesized as a novel catalyst for VOCs oxidation. Compared with Pt/γ-Al_2O_3 during catalytic oxidation of benzene, Pt/Fe Sn O(OH)5 showed better catalytic activity. After characterization of...Pt/FeSnO(OH)_5 was synthesized as a novel catalyst for VOCs oxidation. Compared with Pt/γ-Al_2O_3 during catalytic oxidation of benzene, Pt/Fe Sn O(OH)5 showed better catalytic activity. After characterization of the catalysts by XRD, SEM, TEM, EDS, XPS, BET, TGA and DTA, we found most Pt could be reduced to metallic state when the hydroxyl catalyst was used as supporter, and the metallic Pt in Pt/Fe Sn O(OH)5 was more active than the oxidized Pt in Pt/γ-Al_2O_3 in catalytic oxidation of VOCs. Pt/FeSnO(OH)_5 shows both good catalytic activity and high stability, which may be a promising catalyst. This study may also be helpful for the design and fabrication of new catalysts.展开更多
SO_(2)poisoning is a common problem in the catalytic combustion of volatile organic compounds(VOCs).In this work,we took three-dimensionally ordered macroporous and mesoporous(3DOM)SiO_(2)as the nanoreactor to protect...SO_(2)poisoning is a common problem in the catalytic combustion of volatile organic compounds(VOCs).In this work,we took three-dimensionally ordered macroporous and mesoporous(3DOM)SiO_(2)as the nanoreactor to protect active sites from SO_(2)erosion in the catalytic combustion of benzene.Simultaneously,the confined growth of metal active nanoparticles in the multi-stage pore is also full of challenges.And we successfully confined Co_(3)O_(4)nanoparticles(NPs)in macroporous and mesoporous channels.Interestingly,the precursors’growth in the pore was controlled and nanoreactors with different pore sizes were prepared by adjusting the loading amount and preparation methods.It is discovered that the Co_(3)O_(4)NPs confined in 3DOM SiO_(2)nanoreactor showed superior sulfur and water resistance.Density functional theory(DFT)calculations verified that the Co-Si catalyst had high SO_(2)adsorption energy(-0.48 eV),which illustrated that SO_(2)was hard to attach to the surface of the Co-Si catalyst.The SiO_(2)nanoreactor had low SO_(2)adsorption energy(-5.15 eV),which indicated that SO_(2)was easily absorbed on SiO_(2)nanoreactor.This illustrated that the SiO_(2)nanoreactor could protect effectively active sites from SO_(2)erosion.展开更多
基金supported by the National High-Tech Research and Development Program (863) of China (No. 2008AA06XK1480855)
文摘Mo-modified Pd/Al2O3catalysts were prepared by an impregnation method and tested for the catalytic combustion of benzene. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), temperatureprogrammed desorption of NH3(NH3-TPD), H2temperature-programmed reduction(H2-TPR), and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM). The results showed that the addition of Mo effectively improved the activity and stability of the Pd/Al2O3catalyst by increasing the dispersion of Pd active components, changing the partial oxidation state of palladium and increasing the oxygen species concentration on the surface of catalyst. In the case of the Pd-Mo/Al2O3catalyst,benzene conversion of 90% was obtained at temperatures as low as 190°C, which was 45°C lower than that for similar performance with the Pd/Al2O3catalyst. Moreover, the 1.0% Pd-5% Mo/Al2O3catalyst was more active than the 2.0% Pd/Al2O3catalyst. It was concluded that Pd and Mo have a synergistic effect in benzene catalytic combustion.
基金supported by the National Natural Science Foundation of China(No.51102047,51472050)the Natural Science Foundation of Fujian Province(No.2013J05027)the Fujian Province Education-science Project for Middle-aged and Young Teachers(No.JA13050)
文摘Pt/FeSnO(OH)_5 was synthesized as a novel catalyst for VOCs oxidation. Compared with Pt/γ-Al_2O_3 during catalytic oxidation of benzene, Pt/Fe Sn O(OH)5 showed better catalytic activity. After characterization of the catalysts by XRD, SEM, TEM, EDS, XPS, BET, TGA and DTA, we found most Pt could be reduced to metallic state when the hydroxyl catalyst was used as supporter, and the metallic Pt in Pt/Fe Sn O(OH)5 was more active than the oxidized Pt in Pt/γ-Al_2O_3 in catalytic oxidation of VOCs. Pt/FeSnO(OH)_5 shows both good catalytic activity and high stability, which may be a promising catalyst. This study may also be helpful for the design and fabrication of new catalysts.
基金supported by the National Natural Science Foundation of China(No.52070182)the DNL Cooperation Found,CAS(No.DNL202004)+3 种基金the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL)(No.202206)Talents of Innovation and Entrepreneurship Project of Lanzhou,China(No.2022-RC-26)Major Program of the Lanzhou Institute of Chemical Physics,CAS(No.ZYFZFX-10)Key talent project of Gansu Province.
文摘SO_(2)poisoning is a common problem in the catalytic combustion of volatile organic compounds(VOCs).In this work,we took three-dimensionally ordered macroporous and mesoporous(3DOM)SiO_(2)as the nanoreactor to protect active sites from SO_(2)erosion in the catalytic combustion of benzene.Simultaneously,the confined growth of metal active nanoparticles in the multi-stage pore is also full of challenges.And we successfully confined Co_(3)O_(4)nanoparticles(NPs)in macroporous and mesoporous channels.Interestingly,the precursors’growth in the pore was controlled and nanoreactors with different pore sizes were prepared by adjusting the loading amount and preparation methods.It is discovered that the Co_(3)O_(4)NPs confined in 3DOM SiO_(2)nanoreactor showed superior sulfur and water resistance.Density functional theory(DFT)calculations verified that the Co-Si catalyst had high SO_(2)adsorption energy(-0.48 eV),which illustrated that SO_(2)was hard to attach to the surface of the Co-Si catalyst.The SiO_(2)nanoreactor had low SO_(2)adsorption energy(-5.15 eV),which indicated that SO_(2)was easily absorbed on SiO_(2)nanoreactor.This illustrated that the SiO_(2)nanoreactor could protect effectively active sites from SO_(2)erosion.