Azeotropic liquid mixture cannot be separated by conventional distillation. But extractive distillation or combination of the two can be valid for them. An experiment to separate benzene and cyclohexane by batch extra...Azeotropic liquid mixture cannot be separated by conventional distillation. But extractive distillation or combination of the two can be valid for them. An experiment to separate benzene and cyclohexane by batch extractive distillation was carried out with N, N-dimethylformide (DMF), dime- thyl sulfoxide (DMSO) and their mixture as extractive solvent. The effect of the operation parameters such as solvent flow rate and reflux ratio on the separation was studied under the same operating conditions. The results show that the separation effect was improved with the increase of solvent flow rate and the reflux ratio; all the three extractive solvents can separate benzene and cyciohexane, with DMF being the most efficient one, the mixture the second, and DMSO the least. In the experiment the best operation conditions are with DMF as extractive solvent, the solvent flow rate being 12.33 mUmin, and the reflux ratio being 6. As a result, we can get cyclohexane from the top of tower with the average product content being 86.98%, and its recovering ratio being 83.10%.展开更多
A modified solution-diffusion model was established based on Flory-Huggins thermodynamic theory and Fujita's free volume theory. This model was used for description of the mass transfer of removal benzene from dil...A modified solution-diffusion model was established based on Flory-Huggins thermodynamic theory and Fujita's free volume theory. This model was used for description of the mass transfer of removal benzene from dilute aqueous solutions through polydimethylsiloxane (PDMS) membranes. The effect of component concentration on the interaction parameter between components, that of the polymer membrane on the selectivity to benzene, and that of feed concentration and temperature on the permeation flux and separation factor of benzene/water through PDMS membranes were investigated. Calculated pervaporation fluxes of benzene and water were compared with the experimental results and were in good agreement with the experimental data.展开更多
In this article,numerical simulations are performed to investigate the performance of the thermal diffusion column for the separation of n-heptane/benzene mixture.The present work tried to optimize column by analyzing...In this article,numerical simulations are performed to investigate the performance of the thermal diffusion column for the separation of n-heptane/benzene mixture.The present work tried to optimize column by analyzing significant parameters such as feed flow rate,temperature and cut.In order to obtain the hydrodynamic and temperature and mass distribution inside thermal diffusion column,computational fluid dynamic(CFD) method is applied to solve the Navier-Stocks equations.Numerical simulations are conducted to study the main parameters in both stationary and time-dependent conditions.By using the separation work unit as a function of cut,the optimal cut for maximum SWU occurs within a limited range of 0.47-0.5 for feed rate between 0.5 and 4 g min^-1.Our findings reveal that the optimum feed rate in the range of optimum cut is about 1 g min^-1.In transient study,results show that the best cut for reaching to steady-state condition is θ=0.5.展开更多
Benzene(BEN)and cyclohexane(CYH),which have very close boiling points and a binary azeotrope,are the most difficult binary components in the separation of aromatic and non-aromatic hydrocarbons.This study further expl...Benzene(BEN)and cyclohexane(CYH),which have very close boiling points and a binary azeotrope,are the most difficult binary components in the separation of aromatic and non-aromatic hydrocarbons.This study further explored the separation mechanism and industrial application prospects of BEN+CYH mixtures separated by a dicationic ionic liquid(DIL)[C_(5)(MIM)_(2)][NTf_(2)]_(2) based on experimental research.The calculation results of the Conductor-like Screening model Segment Activity Coefficient(COSMO-SAC)model show that selectivity and solvent capacity of the DIL are significantly improved.The effects of different anions and cations on the micro-structure distribution and diffusion behavior of BEN+CYH system were investigated by quantum chemistry(QC)calculations and molecular dynamics(MD)simulations.The results indicate that the anion[NTf_(2)]_(2)has low polarity,uniform charge distribution,and a dual role of hydrogen bonding andπ-πbonding,and the cation[C_(5)(MIM)_(2)]^(2+) has stronger interaction with BEN and higher selectivity than conventional cations.The liquid-liquid extraction and extractive distillation(LLE-ED)process using an optimized 65 mol/mol DIL+35 mol/mol H_(2)O mixed solution as the extractant was proposed,which solved the problem of low product purity in the LLE process and high energy consumption in the ED process.Under the best operating conditions,the purity of CYH product was 99.9%,the purity of BEN product was 99.6%,the recovery rate of BEN reached 99.9%,and the recovery rate of DIL reached 99.9%.The heat-integrated LLE-ED process reduced total annual cost by 21.6%,and reduced CO_(2) emissions by 48.0%,which has broad industrial application prospects.展开更多
Layered double hydroxides(LDHs)have been shown to be effective adsorbents for boron.However,solid-liquid separation is still a problem when separating boron from industrial radioactive waste liquid.In this research,th...Layered double hydroxides(LDHs)have been shown to be effective adsorbents for boron.However,solid-liquid separation is still a problem when separating boron from industrial radioactive waste liquid.In this research,three types of Mg-Al-LDHs including Mg-Al-LDH(NO_(3)^(-)),Mg-Al-LDH(Cl^(-))and Mg-Al-LDH(SO_(4)^(2-))were applied to adsorb boron,and moreover sodium dodecylbenzenesulfonate(SDBS)was used to float the LDH particles from aqueous solution after boron adsorption.The results showed that 60 min was sufficient for the equilibrium adsorption of the three LDHs.The boron adsorption capacity of three LDHs was determined as follows:Mg-Al-LDH(NO_(3)^(-))>Mg-Al-LDH(Cl^(-))>Mg-Al-LDH(SO_(4)^(2-)),and was 2.0,0.98 and 0.2 mmol·g^(-1),each ranging from 0 to 80 mmol·L^(-1)with the initial boron concentration.The efficiency of boron removal by Mg-Al-LDH(NO_(3)^(-))and SDBS can reach up to 89.7%.Furthermore,the boron flotation mechanism of SDBS and LDHs has been studied,since SDBS as a flotation agent can react with LDHs and penetrate into the interlayer of LDHs in addition to electrostatic attraction.Therefore,LDHs in solution can be floated onto the foam layer to be separated from the solution,and the clarified solution was obtained.The method is simple and promising for boron removal from aqueous solution.展开更多
Benzene is a volatile organic compound that can seriously harm human health,while it can serve as a precursor to produce chemicals of more complex structures in chemical industry.Capturing benzene using adsorbents is ...Benzene is a volatile organic compound that can seriously harm human health,while it can serve as a precursor to produce chemicals of more complex structures in chemical industry.Capturing benzene using adsorbents is of great importance for human health,when the separation of hydrocarbons including benzene from crude oil was referred to as one of the“seven chemical separations to change the world”.In this work,we reported the efficient and selective separation of benzene from BTX and cyclohexane by hydrogen bonding self-assembly nonporous adaptive crystals AdaOH for the first time under mild and user-friendly conditions.Separation of benzene and cyclohexane(v/v=1:1)can be achieved by AdaOH with a purity of benzene up to 96.8%.Separation of BTX(v/v;benzene:toluene:o-xylene:m-xylene:pxylene=1:1:1:1:1)can be achieved by AdaOH with a purity of benzene increased from 20%to 82.9%.Our results suggest that separation of benzene using the activated AdaOH as a non-porous adaptive crystal for selectively and efficiently capturing benzene can solve the challenge in separation of benzene from other chemicals such as cyclohexane in chemical industry,and can be helpful for removal of benzene that is released from the vehicles to air.The advantages of commercially availability,easy preparation,high separation efficiency and selectivity for benzene might endow this material with enormous potential for practical uses in areas like petrochemical industry.展开更多
A new capillary gas chromatography stationary phase, monokis (2,6 di O benzyl 3 O propyl (3’)) hexakis(2,6 di O benzyl 3 O methyl) β CD bonded polysiloxane, was synthesized. It ex...A new capillary gas chromatography stationary phase, monokis (2,6 di O benzyl 3 O propyl (3’)) hexakis(2,6 di O benzyl 3 O methyl) β CD bonded polysiloxane, was synthesized. It exhibited separation abilities to disubstituted benzene isomers and some chiral solutes. It was also found that the polarity of CD derivatives can be lowered both by chemically bonding it to polysiloxane and by diluting it in polysiloxane. The separation abilities of the polysiloxane anchored CDs (SP CD) are higher than that of the unbonded CDs (S CD) and the diluted S CD at lower column temperature. Hydrosilylation reaction is one of the best methods to lower the operating temperature of CDs.展开更多
The hydrogen absorption amount and kinetics of the slurry formed by suspending the MgNi alloy powder in liquid benzene were studied. It is discovered that hydrogen is absorbed by both the solid phase(alloy) and liquid...The hydrogen absorption amount and kinetics of the slurry formed by suspending the MgNi alloy powder in liquid benzene were studied. It is discovered that hydrogen is absorbed by both the solid phase(alloy) and liquid phase(C 6H 6) and the hydrogen absorption rate varies with the temperature and the content of the Mg-Ni in the slurry. Most hydrogen absorption curves of the slurry fall into two regions, in which the mechanism of hydriding reaction in the slurry system is different. In the former region, the hydriding of the alloy proceeds with hydrogen diffusing through C 6H 6. The part in the second region is the outcome of the hydrogenation of C 6H 6. At 548 K and under the hydrogen pressure of 4.5 MPa the saturation capacity for the slurry of 80% C 6H 6(mass fraction)+20% MgNi(mass fraction) is 5.9% (mass fraction) hydrogen, which is 97% of the theoretic capacity of the slurry system. The hydride of the alloy MgNi, which is only the hydride of Mg 2Ni phase, Mg 2NiH 4, is an efficient catalyst for the hydrogenation of C 6H 6 into C 6H 12(C 6H 6+3H 2→C 6H 12) in the slurry system.展开更多
P(AA-MA) copolymers composed of acrylic acid and methyl acrylate with different molecular weights and sequence structures were synthesized by combination of ATRP and selective hydrolysis. These copolymers were used ...P(AA-MA) copolymers composed of acrylic acid and methyl acrylate with different molecular weights and sequence structures were synthesized by combination of ATRP and selective hydrolysis. These copolymers were used as membrane materials to separate benzene/cyclohexane mixture by pervaporation. The effects of molecular weight and sequence structure of the copolymers on the pervaporation performance were investigated in detail. For the random copolymers, the permeate flux decreased rapidly with the increasing of molecular weight. The separation factor was also influenced by the molecular weight, which was changed from no selectivity to cyclohexane selectivity with increasing the molecular weight. Contrarily, the block copolymer membrane showed good benzene selectivity with separation factor of 4.3 and permeate flux of 157 g/(m2h) to 50 wt% benzene/cyclohexane mixture.展开更多
文摘Azeotropic liquid mixture cannot be separated by conventional distillation. But extractive distillation or combination of the two can be valid for them. An experiment to separate benzene and cyclohexane by batch extractive distillation was carried out with N, N-dimethylformide (DMF), dime- thyl sulfoxide (DMSO) and their mixture as extractive solvent. The effect of the operation parameters such as solvent flow rate and reflux ratio on the separation was studied under the same operating conditions. The results show that the separation effect was improved with the increase of solvent flow rate and the reflux ratio; all the three extractive solvents can separate benzene and cyciohexane, with DMF being the most efficient one, the mixture the second, and DMSO the least. In the experiment the best operation conditions are with DMF as extractive solvent, the solvent flow rate being 12.33 mUmin, and the reflux ratio being 6. As a result, we can get cyclohexane from the top of tower with the average product content being 86.98%, and its recovering ratio being 83.10%.
文摘A modified solution-diffusion model was established based on Flory-Huggins thermodynamic theory and Fujita's free volume theory. This model was used for description of the mass transfer of removal benzene from dilute aqueous solutions through polydimethylsiloxane (PDMS) membranes. The effect of component concentration on the interaction parameter between components, that of the polymer membrane on the selectivity to benzene, and that of feed concentration and temperature on the permeation flux and separation factor of benzene/water through PDMS membranes were investigated. Calculated pervaporation fluxes of benzene and water were compared with the experimental results and were in good agreement with the experimental data.
文摘In this article,numerical simulations are performed to investigate the performance of the thermal diffusion column for the separation of n-heptane/benzene mixture.The present work tried to optimize column by analyzing significant parameters such as feed flow rate,temperature and cut.In order to obtain the hydrodynamic and temperature and mass distribution inside thermal diffusion column,computational fluid dynamic(CFD) method is applied to solve the Navier-Stocks equations.Numerical simulations are conducted to study the main parameters in both stationary and time-dependent conditions.By using the separation work unit as a function of cut,the optimal cut for maximum SWU occurs within a limited range of 0.47-0.5 for feed rate between 0.5 and 4 g min^-1.Our findings reveal that the optimum feed rate in the range of optimum cut is about 1 g min^-1.In transient study,results show that the best cut for reaching to steady-state condition is θ=0.5.
基金This work is financially supported by the National Key R&D Program of China(2017YFB0602401).
文摘Benzene(BEN)and cyclohexane(CYH),which have very close boiling points and a binary azeotrope,are the most difficult binary components in the separation of aromatic and non-aromatic hydrocarbons.This study further explored the separation mechanism and industrial application prospects of BEN+CYH mixtures separated by a dicationic ionic liquid(DIL)[C_(5)(MIM)_(2)][NTf_(2)]_(2) based on experimental research.The calculation results of the Conductor-like Screening model Segment Activity Coefficient(COSMO-SAC)model show that selectivity and solvent capacity of the DIL are significantly improved.The effects of different anions and cations on the micro-structure distribution and diffusion behavior of BEN+CYH system were investigated by quantum chemistry(QC)calculations and molecular dynamics(MD)simulations.The results indicate that the anion[NTf_(2)]_(2)has low polarity,uniform charge distribution,and a dual role of hydrogen bonding andπ-πbonding,and the cation[C_(5)(MIM)_(2)]^(2+) has stronger interaction with BEN and higher selectivity than conventional cations.The liquid-liquid extraction and extractive distillation(LLE-ED)process using an optimized 65 mol/mol DIL+35 mol/mol H_(2)O mixed solution as the extractant was proposed,which solved the problem of low product purity in the LLE process and high energy consumption in the ED process.Under the best operating conditions,the purity of CYH product was 99.9%,the purity of BEN product was 99.6%,the recovery rate of BEN reached 99.9%,and the recovery rate of DIL reached 99.9%.The heat-integrated LLE-ED process reduced total annual cost by 21.6%,and reduced CO_(2) emissions by 48.0%,which has broad industrial application prospects.
基金financially supported by the National Natural Science Foundation of China(U20A20150)the National Key Research and Development Program of China(2018YFC1903802)+1 种基金the Youth Scientific Research Fund of Qinghai University(2022QGY-4)the Kunlun Talent Program of Qinghai Province。
文摘Layered double hydroxides(LDHs)have been shown to be effective adsorbents for boron.However,solid-liquid separation is still a problem when separating boron from industrial radioactive waste liquid.In this research,three types of Mg-Al-LDHs including Mg-Al-LDH(NO_(3)^(-)),Mg-Al-LDH(Cl^(-))and Mg-Al-LDH(SO_(4)^(2-))were applied to adsorb boron,and moreover sodium dodecylbenzenesulfonate(SDBS)was used to float the LDH particles from aqueous solution after boron adsorption.The results showed that 60 min was sufficient for the equilibrium adsorption of the three LDHs.The boron adsorption capacity of three LDHs was determined as follows:Mg-Al-LDH(NO_(3)^(-))>Mg-Al-LDH(Cl^(-))>Mg-Al-LDH(SO_(4)^(2-)),and was 2.0,0.98 and 0.2 mmol·g^(-1),each ranging from 0 to 80 mmol·L^(-1)with the initial boron concentration.The efficiency of boron removal by Mg-Al-LDH(NO_(3)^(-))and SDBS can reach up to 89.7%.Furthermore,the boron flotation mechanism of SDBS and LDHs has been studied,since SDBS as a flotation agent can react with LDHs and penetrate into the interlayer of LDHs in addition to electrostatic attraction.Therefore,LDHs in solution can be floated onto the foam layer to be separated from the solution,and the clarified solution was obtained.The method is simple and promising for boron removal from aqueous solution.
基金the financial support from the National Natural Science Foundation of China(No.21602055)Natural Science Foundation of Hunan Province(No.2017JJ3094).
文摘Benzene is a volatile organic compound that can seriously harm human health,while it can serve as a precursor to produce chemicals of more complex structures in chemical industry.Capturing benzene using adsorbents is of great importance for human health,when the separation of hydrocarbons including benzene from crude oil was referred to as one of the“seven chemical separations to change the world”.In this work,we reported the efficient and selective separation of benzene from BTX and cyclohexane by hydrogen bonding self-assembly nonporous adaptive crystals AdaOH for the first time under mild and user-friendly conditions.Separation of benzene and cyclohexane(v/v=1:1)can be achieved by AdaOH with a purity of benzene up to 96.8%.Separation of BTX(v/v;benzene:toluene:o-xylene:m-xylene:pxylene=1:1:1:1:1)can be achieved by AdaOH with a purity of benzene increased from 20%to 82.9%.Our results suggest that separation of benzene using the activated AdaOH as a non-porous adaptive crystal for selectively and efficiently capturing benzene can solve the challenge in separation of benzene from other chemicals such as cyclohexane in chemical industry,and can be helpful for removal of benzene that is released from the vehicles to air.The advantages of commercially availability,easy preparation,high separation efficiency and selectivity for benzene might endow this material with enormous potential for practical uses in areas like petrochemical industry.
文摘A new capillary gas chromatography stationary phase, monokis (2,6 di O benzyl 3 O propyl (3’)) hexakis(2,6 di O benzyl 3 O methyl) β CD bonded polysiloxane, was synthesized. It exhibited separation abilities to disubstituted benzene isomers and some chiral solutes. It was also found that the polarity of CD derivatives can be lowered both by chemically bonding it to polysiloxane and by diluting it in polysiloxane. The separation abilities of the polysiloxane anchored CDs (SP CD) are higher than that of the unbonded CDs (S CD) and the diluted S CD at lower column temperature. Hydrosilylation reaction is one of the best methods to lower the operating temperature of CDs.
文摘The hydrogen absorption amount and kinetics of the slurry formed by suspending the MgNi alloy powder in liquid benzene were studied. It is discovered that hydrogen is absorbed by both the solid phase(alloy) and liquid phase(C 6H 6) and the hydrogen absorption rate varies with the temperature and the content of the Mg-Ni in the slurry. Most hydrogen absorption curves of the slurry fall into two regions, in which the mechanism of hydriding reaction in the slurry system is different. In the former region, the hydriding of the alloy proceeds with hydrogen diffusing through C 6H 6. The part in the second region is the outcome of the hydrogenation of C 6H 6. At 548 K and under the hydrogen pressure of 4.5 MPa the saturation capacity for the slurry of 80% C 6H 6(mass fraction)+20% MgNi(mass fraction) is 5.9% (mass fraction) hydrogen, which is 97% of the theoretic capacity of the slurry system. The hydride of the alloy MgNi, which is only the hydride of Mg 2Ni phase, Mg 2NiH 4, is an efficient catalyst for the hydrogenation of C 6H 6 into C 6H 12(C 6H 6+3H 2→C 6H 12) in the slurry system.
基金supported by the National Natural Science Foundation of China(No.20704036)
文摘P(AA-MA) copolymers composed of acrylic acid and methyl acrylate with different molecular weights and sequence structures were synthesized by combination of ATRP and selective hydrolysis. These copolymers were used as membrane materials to separate benzene/cyclohexane mixture by pervaporation. The effects of molecular weight and sequence structure of the copolymers on the pervaporation performance were investigated in detail. For the random copolymers, the permeate flux decreased rapidly with the increasing of molecular weight. The separation factor was also influenced by the molecular weight, which was changed from no selectivity to cyclohexane selectivity with increasing the molecular weight. Contrarily, the block copolymer membrane showed good benzene selectivity with separation factor of 4.3 and permeate flux of 157 g/(m2h) to 50 wt% benzene/cyclohexane mixture.