期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A New Third S.N.Bernstein Interpolation Polynomial
1
作者 何甲兴 李笑牛 《Chinese Quarterly Journal of Mathematics》 CSCD 1998年第4期10-16, ,共7页
In this paper,a new third type S.N.Bernstein interpolation polynomial H n(f;x,r) with zeros of the Chebyshev ploynomial of the second kind is constructed. H n(f;x,r) converge uniformly on [-1,1] for any continuous fun... In this paper,a new third type S.N.Bernstein interpolation polynomial H n(f;x,r) with zeros of the Chebyshev ploynomial of the second kind is constructed. H n(f;x,r) converge uniformly on [-1,1] for any continuous function f(x) . The convergence order is the best order if \{f(x)∈C j[-1,1],\}0jr, where r is an odd natural number. 展开更多
关键词 uniform approximation the best convergence order Lagrange interpolation polynomial
下载PDF
On a New Family of Trigonometric Summation Polynomials of Bernstein Type
2
作者 袁学刚 何甲兴 《Northeastern Mathematical Journal》 CSCD 2006年第1期99-104,共6页
A new family of trigonometric summation polynomials, Gn,r(f; θ), of Bernstein type is constructed. In contrast to other trigonometric summation polynomials, the convergence properties of the new polynomials are sup... A new family of trigonometric summation polynomials, Gn,r(f; θ), of Bernstein type is constructed. In contrast to other trigonometric summation polynomials, the convergence properties of the new polynomials are superior to others. It is proved that Gn,r(f; θ) converges to arbitrary continuous functions with period 2π uniformly on (-∞ +∞) as n→ ∞. In particular, Gn,r(f; θ) has the best convergence order, and its saturation order is 1/n^2r+4. 展开更多
关键词 trigonometric summation polynomial uniform convergence the best convergence order saturation order
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部