In this paper,a new third type S.N.Bernstein interpolation polynomial H n(f;x,r) with zeros of the Chebyshev ploynomial of the second kind is constructed. H n(f;x,r) converge uniformly on [-1,1] for any continuous fun...In this paper,a new third type S.N.Bernstein interpolation polynomial H n(f;x,r) with zeros of the Chebyshev ploynomial of the second kind is constructed. H n(f;x,r) converge uniformly on [-1,1] for any continuous function f(x) . The convergence order is the best order if \{f(x)∈C j[-1,1],\}0jr, where r is an odd natural number.展开更多
A new family of trigonometric summation polynomials, Gn,r(f; θ), of Bernstein type is constructed. In contrast to other trigonometric summation polynomials, the convergence properties of the new polynomials are sup...A new family of trigonometric summation polynomials, Gn,r(f; θ), of Bernstein type is constructed. In contrast to other trigonometric summation polynomials, the convergence properties of the new polynomials are superior to others. It is proved that Gn,r(f; θ) converges to arbitrary continuous functions with period 2π uniformly on (-∞ +∞) as n→ ∞. In particular, Gn,r(f; θ) has the best convergence order, and its saturation order is 1/n^2r+4.展开更多
文摘In this paper,a new third type S.N.Bernstein interpolation polynomial H n(f;x,r) with zeros of the Chebyshev ploynomial of the second kind is constructed. H n(f;x,r) converge uniformly on [-1,1] for any continuous function f(x) . The convergence order is the best order if \{f(x)∈C j[-1,1],\}0jr, where r is an odd natural number.
文摘A new family of trigonometric summation polynomials, Gn,r(f; θ), of Bernstein type is constructed. In contrast to other trigonometric summation polynomials, the convergence properties of the new polynomials are superior to others. It is proved that Gn,r(f; θ) converges to arbitrary continuous functions with period 2π uniformly on (-∞ +∞) as n→ ∞. In particular, Gn,r(f; θ) has the best convergence order, and its saturation order is 1/n^2r+4.