BACKGROUND There is concern regarding potential long-term cardiotoxicity with systemic distribution of metals in total joint arthroplasty(TJA)patients.AIM To determine the association of commonly used implant metals w...BACKGROUND There is concern regarding potential long-term cardiotoxicity with systemic distribution of metals in total joint arthroplasty(TJA)patients.AIM To determine the association of commonly used implant metals with echocardiographic measures in TJA patients.METHODS The study comprised 110 TJA patients who had a recent history of high chromium,cobalt or titanium concentrations.Patients underwent two-dimensional,three-dimensional,Doppler and speckle-strain transthoracic echocardiography and a blood draw to measure metal concentrations.Age and sex-adjusted linear and logistic regression models were used to examine the association of metal concentrations(exposure)with echocardiographic measures(outcome).RESULTS Higher cobalt concentrations were associated with increased left ventricular end-diastolic volume(estimate 5.09;95%CI:0.02-10.17)as well as left atrial and right ventricular dilation,particularly in men but no changes in cardiac function.Higher titanium concentrations were associated with a reduction in left ventricle global longitudinal strain(estimate 0.38;95%CI:0.70 to 0.06)and cardiac index(estimate 0.08;95%CI,-0.15 to-0.01).CONCLUSION Elevated cobalt and titanium concentrations may be associated with structural and functional cardiac changes in some patients.Longitudinal studies are warranted to better understand the systemic effects of metals in TJA patients.展开更多
To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)condit...To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles.展开更多
Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the ho...Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the hollow structure and to transfer the stresses during the high temperature deformation,the sand mandrel is proposed.In this paper,the hollow AZ31 magnesium alloy three-channel joint is studied by hot extrusion forming.Sand as one of solid granule medium is used to fill the hollow magnesium alloy.The extrusion temperatures are 230℃ and 300℃,respectively.The process parameters(die angle,temperature,bottom thickness,sidewall thickness,edge-to-middle ratio in bottom,bottom shape)of the hollow magnesium alloy are analyzed based on the results of experiments and the finite element method.The results are shown that the formability of the hollow magnesium alloy will be much better when the ratio of sidewall thickness to the bottom thickness is 1:1.5.Also when edge-to-middle ratio in bottom is about 1:1.5,a better forming product can be received.The best bottom shape in these experiments will be convex based on the forming results.The grain will be refined obviously after the extrusion.Also the microstructures will be shown as streamlines.And these lines will be well agreement with the mold in the corner.展开更多
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.展开更多
Accurate measurement of the evolution of rock joint void geometry is essential for comprehending the distribution characteristics of asperities responsible for shear and seepage behaviors.However,existing techniques o...Accurate measurement of the evolution of rock joint void geometry is essential for comprehending the distribution characteristics of asperities responsible for shear and seepage behaviors.However,existing techniques often require specialized equipment and skilled operators,posing practical challenges.In this study,a cost-effective photogrammetric approach is proposed.Particularly,local coordinate systems are established to facilitate the alignment and precise quantification of the relative position between two halves of a rock joint.Push/pull tests are conducted on rock joints with varying roughness levels to induce different contact states.A high-precision laser scanner serves as a benchmark for evaluating the photogrammetry method.Despite certain deviations exist,the measured evolution of void geometry is generally consistent with the qualitative findings of previous studies.The photogrammetric measurements yield comparable accuracy to laser scanning,with maximum errors of 13.2%for aperture and 14.4%for void volume.Most joint matching coefficient(JMC)measurement errors are below 20%.Larger measurement errors occur primarily in highly mismatched rock joints with JMC values below 0.2,but even in cases where measurement errors exceed 80%,the maximum JMC error is only 0.0434.Thus,the proposed photogrammetric approach holds promise for widespread application in void geometry measurements in rock joints.展开更多
The damage of rock joints or fractures upon shear includes the surface damage occurring at the contact asperities and the damage beneath the shear surface within the host rock.The latter is commonly known as off-fault...The damage of rock joints or fractures upon shear includes the surface damage occurring at the contact asperities and the damage beneath the shear surface within the host rock.The latter is commonly known as off-fault damage and has been much less investigated than the surface damage.The main contribution of this study is to compare the results of direct shear tests conducted on saw-cut planar joints and tension-induced rough granite joints under normal stresses ranging from 1 MPa to 50 MPa.The shear-induced off-fault damages are quantified and compared with the optical microscope observation.Our results clearly show that the planar joints slip stably under all the normal stresses except under 50 MPa,where some local fractures and regular stick-slip occur towards the end of the test.Both post-peak stress drop and stick-slip occur for all the rough joints.The residual shear strength envelopes for the rough joints and the peak shear strength envelope for the planar joints almost overlap.The root mean square(RMS)of asperity height for the rough joints decreases while it increases for the planar joint after shear,and a larger normal stress usually leads to a more significant decrease or increase in RMS.Besides,the extent of off-fault damage(or damage zone)increases with normal stress for both planar and rough joints,and it is restricted to a very thin layer with limited micro-cracks beneath the planar joint surface.In comparison,the thickness of the damage zone for the rough joints is about an order of magnitude larger than that of the planar joints,and the coalesced micro-cracks are generally inclined to the shear direction with acute angles.The findings obtained in this study contribute to a better understanding on the frictional behavior and damage characteristics of rock joints or fractures with different roughness.展开更多
To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence...To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence ratioη,a numerical model of the biaxial Hopkinson bar test system was established using the finite element method–discrete-element model coupling method.The validity of the model was verified by comparing and analyzing it in conjunction with laboratory test results.Dynamics-static combined impact tests were conducted on specimens under various conditions to investigate the strength characteristics and patterns of crack initiation and expansion.The study revealed the predominant factors influencing intersecting joints with different angles and penetrations under impact loading.The results show that the peak stress of the specimens decreases first and then increases with the increase of the cross angle.Whenα<60°,regardless of the value ofη,the dynamic stress of the specimens is controlled by the main joint.Whenα≥60°,the peak stress borne by the specimens decreases with increasingη.Whenα<60°,the initiation and propagation of cracks in the cross-jointed specimens are mainly controlled by the main joint,and the final failure surface of the specimens is composed of the main joint and wing cracks.Whenα≥60°orη≥0.67,the secondary joint guides the expansion of the wing cracks,and multiple failure surfaces composed of main and secondary joints,wing cracks,and co-planar cracks are formed.Increasing lateral confinement significantly increases the dynamic peak stress able to be borne by the specimens.Under triaxial conditions,the degree of failure of the intersecting jointed specimens is much lower than that under uniaxial and biaxial conditions.展开更多
When the geological environment of rock masses is disturbed,numerous non-persisting open joints can appear within it.It is crucial to investigate the effect of open joints on the mechanical properties of rock mass.How...When the geological environment of rock masses is disturbed,numerous non-persisting open joints can appear within it.It is crucial to investigate the effect of open joints on the mechanical properties of rock mass.However,it has been challenging to generate realistic open joints in traditional experimental tests and numerical simulations.This paper presents a novel solution to solve the problem.By utilizing the stochastic distribution of joints and an enhanced-fractal interpolation system(IFS)method,rough curves with any orientation can be generated.The Douglas-Peucker algorithm is then applied to simplify these curves by removing unnecessary points while preserving their fundamental shape.Subsequently,open joints are created by connecting points that move to both sides of rough curves based on the aperture distribution.Mesh modeling is performed to construct the final mesh model.Finally,the RB-DEM method is applied to transform the mesh model into a discrete element model containing geometric information about these open joints.Furthermore,this study explores the impacts of rough open joint orientation,aperture,and number on rock fracture mechanics.This method provides a realistic and effective approach for modeling and simulating these non-persisting open joints.展开更多
BACKGROUND With the increasing incidence of total joint arthroplasty(TJA),there is a desire to reduce peri-operative complications and resource utilization.As degenerative conditions progress in multiple joints,many p...BACKGROUND With the increasing incidence of total joint arthroplasty(TJA),there is a desire to reduce peri-operative complications and resource utilization.As degenerative conditions progress in multiple joints,many patients undergo multiple proce-dures.AIM To determine if both physicians and patients learn from the patient’s initial arth-roplasty,resulting in improved outcomes following the second procedure.METHODS The institutional database was retrospectively queried for primary total hip arth-roplasty(THA)and total knee arthroplasty(TKA).Patients with only unilateral THA or TKA,and patients undergoing same-day bilateral TJA,were excluded.Patient demographics,comorbidities,and implant sizes were collected at the time of each procedure and patients were stratified by first vs second surgery.Outcome metrics evaluated included operative time,length of stay(LOS),disposition,90-d readmissions and emergency department(ED)visits.RESULTS A total of 642 patients,including 364 undergoing staged bilateral TKA and 278 undergoing bilateral THA,were analyzed.There was no significant difference in demographics or comorbidities between the first and second procedure,which were separated by a mean of 285 d.For THA and TKA,LOS was significantly less for the second surgery,with 66%of patients having a shorter hospitalization(P<0.001).THA patients had significantly decreased operative time only when the same sized implant was utilized(P=0.025).The vast majority(93.3%)of patients were discharged to the same type of location following their second surgery.However,when a change in disposition was present from the first surgery,patients were significantly more likely to be discharged to home after the second procedure(P=0.033).There was no difference between procedures for post-operative readmissions(P=0.438)or ED visits(P=0.915).CONCLUSION After gaining valuable experience recovering from the initial surgery,a patient’s perioperative outcomes are improved for their second TJA.This may be the result of increased confidence and decreased anxiety,and it supports the theory that enhanced patient education pre-operatively may improve outcomes.For the surgical team,the second procedure of a staged THA is more efficient,although this finding did not hold for TKA.展开更多
Conventional numerical solutions developed to describe the geomechanical behavior of rock interfaces subjected to differential load emphasize peak and residual shear strengths.The detailed analysis of preand post-peak...Conventional numerical solutions developed to describe the geomechanical behavior of rock interfaces subjected to differential load emphasize peak and residual shear strengths.The detailed analysis of preand post-peak shear stress-displacement behavior is central to various time-dependent and dynamic rock mechanic problems such as rockbursts and structural instabilities in highly stressed conditions.The complete stress-displacement surface(CSDS)model was developed to describe analytically the pre-and post-peak behavior of rock interfaces under differential loads.Original formulations of the CSDS model required extensive curve-fitting iterations which limited its practical applicability and transparent integration into engineering tools.The present work proposes modifications to the CSDS model aimed at developing a comprehensive and modern calibration protocol to describe the complete shear stressdisplacement behavior of rock interfaces under differential loads.The proposed update to the CSDS model incorporates the concept of mobilized shear strength to enhance the post-peak formulations.Barton’s concepts of joint roughness coefficient(JRC)and joint compressive strength(JCS)are incorporated to facilitate empirical estimations for peak shear stress and normal closure relations.Triaxial/uniaxial compression test and direct shear test results are used to validate the updated model and exemplify the proposed calibration method.The results illustrate that the revised model successfully predicts the post-peak and complete axial stressestrain and shear stressedisplacement curves for rock joints.展开更多
Objective:Autosomal recessive bestrophinopathy(ARB),a retinal degenerative disease,is characterized by central visual loss,yellowish multifocal diffuse subretinal deposits,and a dramatic decrease in the light peak on ...Objective:Autosomal recessive bestrophinopathy(ARB),a retinal degenerative disease,is characterized by central visual loss,yellowish multifocal diffuse subretinal deposits,and a dramatic decrease in the light peak on electrooculogram.The potential pathogenic mechanism involves mutations in the BEST1 gene,which encodes Ca2+-activated Cl−channels in the retinal pigment epithelium(RPE),resulting in degeneration of RPE and photoreceptor.In this study,the complete clinical characteristics of two Chinese ARB families were summarized.Methods:Pacific Biosciences(PacBio)single-molecule real-time(SMRT)sequencing was performed on the probands to screen for disease-causing gene mutations,and Sanger sequencing was applied to validate variants in the patients and their family members.Results:Two novel mutations,c.202T>C(chr11:61722628,p.Y68H)and c.867+97G>A,in the BEST1 gene were identified in the two Chinese ARB families.The novel missense mutation BEST1 c.202T>C(p.Y68H)resulted in the substitution of tyrosine with histidine in the N-terminal region of transmembrane domain 2 of bestrophin-1.Another novel variant,BEST1 c.867+97G>A(chr11:61725867),located in intron 7,might be considered a regulatory variant that changes allele-specific binding affinity based on motifs of important transcriptional regulators.Conclusion:Our findings represent the first use of third-generation sequencing(TGS)to identify novel BEST1 mutations in patients with ARB,indicating that TGS can be a more accurate and efficient tool for identifying mutations in specific genes.The novel variants identified further broaden the mutation spectrum of BEST1 in the Chinese population.展开更多
Lug joints are preferred joineries for transferring heavy loads to parent components in aerospace vehicles.They experience corrosion due to environmental conditions,improper surface finishes and rubbing displacement b...Lug joints are preferred joineries for transferring heavy loads to parent components in aerospace vehicles.They experience corrosion due to environmental conditions,improper surface finishes and rubbing displacement between the pin and lug-hole.This causes damage of different sizes and shapes near the lug-hole.Stiffness degradation due to corrosion-induced damage is modelled as a through-pit at one of the identified critical locations through stress analysis.The effect of this pit on fatigue crack initiation life is estimated.Lug-hole is pre-stressed by cold-working and the benefits of inducing plastic wake on the intended performance of the lug joint during the damages due to corrosion are brought out and compared with non-cold-worked lug-hole.Numerical analysis is performed on this lug joint with pressfit.The results obtained highlight the benefits of cold-working and the methodology can be extended to damage growth and analyse the effect of surface treatments for better structural integrity of components of aerospace vehicles.展开更多
Solder joint,crucial component in electronic systems,face significant challenges when exposed to extreme conditions during applications.The solder joint reliability involving microstructure and mechanical properties w...Solder joint,crucial component in electronic systems,face significant challenges when exposed to extreme conditions during applications.The solder joint reliability involving microstructure and mechanical properties will be affected by extreme conditions.Understanding the behaviour of solder joints under extreme conditions is vital to determine the durability and reliability of solder joint.This review paper aims to comprehensively explore the underlying failure mechanism affecting solder joint reliability under extreme conditions.This study covers an in-depth analysis of effect extreme temperature,mechanical stress,and radiation conditions towards solder joint.Impact of each condition to the microstructure including solder matrix and intermetallic compound layer,and mechanical properties such as fatigue,shear strength,creep,and hardness was thoroughly discussed.The failure mechanisms were illustrated in graphical diagrams to ensure clarity and understanding.Furthermore,the paper highlighted mitigation strategies that enhancing solder joint reliability under challenging operating conditions.The findings offer valuable guidance for researchers,engineers,and practitioners involved in electronics,engineering,and related fields,fostering advancements in solder joint reliability and performance.展开更多
The Backscatter communication has gained widespread attention from academia and industry in recent years. In this paper, A method of resource allocation and trajectory optimization is proposed for UAV-assisted backsca...The Backscatter communication has gained widespread attention from academia and industry in recent years. In this paper, A method of resource allocation and trajectory optimization is proposed for UAV-assisted backscatter communication based on user trajectory. This paper will establish an optimization problem of jointly optimizing the UAV trajectories, UAV transmission power and BD scheduling based on the large-scale channel state signals estimated in advance of the known user trajectories, taking into account the constraints of BD data and working energy consumption, to maximize the energy efficiency of the system. The problem is a non-convex optimization problem in fractional form, and there is nonlinear coupling between optimization variables.An iterative algorithm is proposed based on Dinkelbach algorithm, block coordinate descent method and continuous convex optimization technology. First, the objective function is converted into a non-fractional programming problem based on Dinkelbach method,and then the block coordinate descent method is used to decompose the original complex problem into three independent sub-problems. Finally, the successive convex approximation method is used to solve the trajectory optimization sub-problem. The simulation results show that the proposed scheme and algorithm have obvious energy efficiency gains compared with the comparison scheme.展开更多
A series of Zn-xAl(x=0-35 wt.%)alloy filler metals were designed to join AZ31 Mg alloy to 6061 Al alloy by laser-TIG hybrid welding.The effect of Al content on the wettability of filler metals,microstructure evolution...A series of Zn-xAl(x=0-35 wt.%)alloy filler metals were designed to join AZ31 Mg alloy to 6061 Al alloy by laser-TIG hybrid welding.The effect of Al content on the wettability of filler metals,microstructure evolution and strength of joint was investigated.The results indicated that the strength of joints was improved with the increase of Al content in filler metals.When Zn-15Al filler was used,the ultimate fracture load reached the maximum of 1475.3 N/cm,which was increased by 28%than that with pure Zn filler.The reason is that the Al element acts as a"reaction depressant"in filler metal,which contributes to inhibiting the dissolution of Mg base metal and the Mg-Zn reaction.The addition of appropriate quantity of Al element promoted the precipitation of Al-rich solid solution instead of Zn solid solution.The MgZn_(2) IMCs have lower lattice mismatch with Al solid solution than Zn solid solution,thus the strength of joints is improved.However,the excessive addition of Al caused the formation of brittle Mg32(Al,Zn)49 ternary compounds,leading to the deterioration of joint performance.展开更多
The response of thermosphere density to geomagnetic storms is a complicated physical process.Multi-satellite joint observations at the same altitude but different local times(LTs)are important for understanding this p...The response of thermosphere density to geomagnetic storms is a complicated physical process.Multi-satellite joint observations at the same altitude but different local times(LTs)are important for understanding this process;however,until now such studies have hardly been done.In this report,we analyze in detail the thermosphere mass density response at 510 km during the April 23−24,2023 geomagnetic storm using data derived from the TM-1(TianMu-1)satellite constellation and Swarm-B satellites.The observations show that there were significant LT differences in the hemispheric asymmetry of the thermosphere mass density during the geomagnetic storm.Densities observed by satellite TM02 at nearly 11.3 and 23.3 LTs were larger in the northern hemisphere than in the southern.The TM04 dayside density observations appear to be almost symmetrical with respect to the equator,though southern hemisphere densities on the nightside were higher.Swarm-B data exhibit near-symmetry between the hemispheres.In addition,the mass density ratio results show that TM04 nightside observations,TM02 data,and Swarm-B data all clearly show stronger effects in the southern hemisphere,except for TM04 on the dayside,which suggest hemispheric near-symmetry.The South-North density enhancement differences in TM02 and TM04 on dayside can reach 130%,and Swarm-B data even achieve 180%difference.From the observations of all three satellites,large-scale traveling atmospheric disturbances(TADs)first appear at high latitudes and propagate to low latitudes,thereby disturbing the atmosphere above the equator and even into the opposite hemisphere.NRLMSISE00 model simulations were also performed on this geomagnetic storm.TADs are absent in the NRLMSISE00 simulations.The satellite data suggest that NRLMSISE00 significantly underestimates the magnitude of the density response of the thermosphere during geomagnetic storms,especially at high latitudes in both hemispheres.Therefore,use of the density simulation of NRLMSISE00 may lead to large errors in satellite drag calculations and orbit predictions.We suggest that the high temporal and spatial resolution of direct density observations by the TM-1 constellation satellites can provide an autonomous and reliable basis for correction and improvement of atmospheric models.展开更多
基金Supported by The National Institutes of Health,No.R01HL147155 and No.R01AG060920.
文摘BACKGROUND There is concern regarding potential long-term cardiotoxicity with systemic distribution of metals in total joint arthroplasty(TJA)patients.AIM To determine the association of commonly used implant metals with echocardiographic measures in TJA patients.METHODS The study comprised 110 TJA patients who had a recent history of high chromium,cobalt or titanium concentrations.Patients underwent two-dimensional,three-dimensional,Doppler and speckle-strain transthoracic echocardiography and a blood draw to measure metal concentrations.Age and sex-adjusted linear and logistic regression models were used to examine the association of metal concentrations(exposure)with echocardiographic measures(outcome).RESULTS Higher cobalt concentrations were associated with increased left ventricular end-diastolic volume(estimate 5.09;95%CI:0.02-10.17)as well as left atrial and right ventricular dilation,particularly in men but no changes in cardiac function.Higher titanium concentrations were associated with a reduction in left ventricle global longitudinal strain(estimate 0.38;95%CI:0.70 to 0.06)and cardiac index(estimate 0.08;95%CI,-0.15 to-0.01).CONCLUSION Elevated cobalt and titanium concentrations may be associated with structural and functional cardiac changes in some patients.Longitudinal studies are warranted to better understand the systemic effects of metals in TJA patients.
基金financially supported by the National Natural Science Foundation of China(Grant No.42172292)Taishan Scholars Project Special Funding,and Shandong Energy Group(Grant No.SNKJ 2022A01-R26).
文摘To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles.
基金National Natural Science Foundation of China No.51905068Natural Science Foundation of Liaoning Province No.2020-HYLH-24The open research fund from the State Key Laboratory of Rolling and Automation,Northeastern University No.2020RALKFKT012。
文摘Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the hollow structure and to transfer the stresses during the high temperature deformation,the sand mandrel is proposed.In this paper,the hollow AZ31 magnesium alloy three-channel joint is studied by hot extrusion forming.Sand as one of solid granule medium is used to fill the hollow magnesium alloy.The extrusion temperatures are 230℃ and 300℃,respectively.The process parameters(die angle,temperature,bottom thickness,sidewall thickness,edge-to-middle ratio in bottom,bottom shape)of the hollow magnesium alloy are analyzed based on the results of experiments and the finite element method.The results are shown that the formability of the hollow magnesium alloy will be much better when the ratio of sidewall thickness to the bottom thickness is 1:1.5.Also when edge-to-middle ratio in bottom is about 1:1.5,a better forming product can be received.The best bottom shape in these experiments will be convex based on the forming results.The grain will be refined obviously after the extrusion.Also the microstructures will be shown as streamlines.And these lines will be well agreement with the mold in the corner.
基金supported by the Stable-Support Scientific Project of the China Research Institute of Radio-wave Propagation(Grant No.A13XXXXWXX)the National Natural Science Foundation of China(Grant Nos.42174210,4207202,and 42188101)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant No.XDA15014800)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.
基金supported by the National Natural Science Foundation of China (Nos.42207175 and 42177117)the Ningbo Natural Science Foundation (No.2022J115)。
文摘Accurate measurement of the evolution of rock joint void geometry is essential for comprehending the distribution characteristics of asperities responsible for shear and seepage behaviors.However,existing techniques often require specialized equipment and skilled operators,posing practical challenges.In this study,a cost-effective photogrammetric approach is proposed.Particularly,local coordinate systems are established to facilitate the alignment and precise quantification of the relative position between two halves of a rock joint.Push/pull tests are conducted on rock joints with varying roughness levels to induce different contact states.A high-precision laser scanner serves as a benchmark for evaluating the photogrammetry method.Despite certain deviations exist,the measured evolution of void geometry is generally consistent with the qualitative findings of previous studies.The photogrammetric measurements yield comparable accuracy to laser scanning,with maximum errors of 13.2%for aperture and 14.4%for void volume.Most joint matching coefficient(JMC)measurement errors are below 20%.Larger measurement errors occur primarily in highly mismatched rock joints with JMC values below 0.2,but even in cases where measurement errors exceed 80%,the maximum JMC error is only 0.0434.Thus,the proposed photogrammetric approach holds promise for widespread application in void geometry measurements in rock joints.
基金financial support from Taishan Scholars Program(Grant No.2019KJG002)National Natural Science Foundation of China(Grant Nos.42272329 and 52279116).
文摘The damage of rock joints or fractures upon shear includes the surface damage occurring at the contact asperities and the damage beneath the shear surface within the host rock.The latter is commonly known as off-fault damage and has been much less investigated than the surface damage.The main contribution of this study is to compare the results of direct shear tests conducted on saw-cut planar joints and tension-induced rough granite joints under normal stresses ranging from 1 MPa to 50 MPa.The shear-induced off-fault damages are quantified and compared with the optical microscope observation.Our results clearly show that the planar joints slip stably under all the normal stresses except under 50 MPa,where some local fractures and regular stick-slip occur towards the end of the test.Both post-peak stress drop and stick-slip occur for all the rough joints.The residual shear strength envelopes for the rough joints and the peak shear strength envelope for the planar joints almost overlap.The root mean square(RMS)of asperity height for the rough joints decreases while it increases for the planar joint after shear,and a larger normal stress usually leads to a more significant decrease or increase in RMS.Besides,the extent of off-fault damage(or damage zone)increases with normal stress for both planar and rough joints,and it is restricted to a very thin layer with limited micro-cracks beneath the planar joint surface.In comparison,the thickness of the damage zone for the rough joints is about an order of magnitude larger than that of the planar joints,and the coalesced micro-cracks are generally inclined to the shear direction with acute angles.The findings obtained in this study contribute to a better understanding on the frictional behavior and damage characteristics of rock joints or fractures with different roughness.
基金supported by Open Research Fund of Hubei Key Laboratory of Blasting(Engineering HKL-BEF202006)the National Natural Science Foundation of China(52079102,52108368).
文摘To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence ratioη,a numerical model of the biaxial Hopkinson bar test system was established using the finite element method–discrete-element model coupling method.The validity of the model was verified by comparing and analyzing it in conjunction with laboratory test results.Dynamics-static combined impact tests were conducted on specimens under various conditions to investigate the strength characteristics and patterns of crack initiation and expansion.The study revealed the predominant factors influencing intersecting joints with different angles and penetrations under impact loading.The results show that the peak stress of the specimens decreases first and then increases with the increase of the cross angle.Whenα<60°,regardless of the value ofη,the dynamic stress of the specimens is controlled by the main joint.Whenα≥60°,the peak stress borne by the specimens decreases with increasingη.Whenα<60°,the initiation and propagation of cracks in the cross-jointed specimens are mainly controlled by the main joint,and the final failure surface of the specimens is composed of the main joint and wing cracks.Whenα≥60°orη≥0.67,the secondary joint guides the expansion of the wing cracks,and multiple failure surfaces composed of main and secondary joints,wing cracks,and co-planar cracks are formed.Increasing lateral confinement significantly increases the dynamic peak stress able to be borne by the specimens.Under triaxial conditions,the degree of failure of the intersecting jointed specimens is much lower than that under uniaxial and biaxial conditions.
基金supported by the National Key R&D Program of China (2018YFC0407004)the Fundamental Research Funds for the Central Universities (Nos.B200201059,2021FZZX001-14)the National Natural Science Foundation of China (Grant No.51709089)and 111 Project.
文摘When the geological environment of rock masses is disturbed,numerous non-persisting open joints can appear within it.It is crucial to investigate the effect of open joints on the mechanical properties of rock mass.However,it has been challenging to generate realistic open joints in traditional experimental tests and numerical simulations.This paper presents a novel solution to solve the problem.By utilizing the stochastic distribution of joints and an enhanced-fractal interpolation system(IFS)method,rough curves with any orientation can be generated.The Douglas-Peucker algorithm is then applied to simplify these curves by removing unnecessary points while preserving their fundamental shape.Subsequently,open joints are created by connecting points that move to both sides of rough curves based on the aperture distribution.Mesh modeling is performed to construct the final mesh model.Finally,the RB-DEM method is applied to transform the mesh model into a discrete element model containing geometric information about these open joints.Furthermore,this study explores the impacts of rough open joint orientation,aperture,and number on rock fracture mechanics.This method provides a realistic and effective approach for modeling and simulating these non-persisting open joints.
文摘BACKGROUND With the increasing incidence of total joint arthroplasty(TJA),there is a desire to reduce peri-operative complications and resource utilization.As degenerative conditions progress in multiple joints,many patients undergo multiple proce-dures.AIM To determine if both physicians and patients learn from the patient’s initial arth-roplasty,resulting in improved outcomes following the second procedure.METHODS The institutional database was retrospectively queried for primary total hip arth-roplasty(THA)and total knee arthroplasty(TKA).Patients with only unilateral THA or TKA,and patients undergoing same-day bilateral TJA,were excluded.Patient demographics,comorbidities,and implant sizes were collected at the time of each procedure and patients were stratified by first vs second surgery.Outcome metrics evaluated included operative time,length of stay(LOS),disposition,90-d readmissions and emergency department(ED)visits.RESULTS A total of 642 patients,including 364 undergoing staged bilateral TKA and 278 undergoing bilateral THA,were analyzed.There was no significant difference in demographics or comorbidities between the first and second procedure,which were separated by a mean of 285 d.For THA and TKA,LOS was significantly less for the second surgery,with 66%of patients having a shorter hospitalization(P<0.001).THA patients had significantly decreased operative time only when the same sized implant was utilized(P=0.025).The vast majority(93.3%)of patients were discharged to the same type of location following their second surgery.However,when a change in disposition was present from the first surgery,patients were significantly more likely to be discharged to home after the second procedure(P=0.033).There was no difference between procedures for post-operative readmissions(P=0.438)or ED visits(P=0.915).CONCLUSION After gaining valuable experience recovering from the initial surgery,a patient’s perioperative outcomes are improved for their second TJA.This may be the result of increased confidence and decreased anxiety,and it supports the theory that enhanced patient education pre-operatively may improve outcomes.For the surgical team,the second procedure of a staged THA is more efficient,although this finding did not hold for TKA.
基金The authors acknowledge the financial support from Natural Sciences and Engineering Research Council of Canada through its Discovery Grant program(RGPIN-2022-03893)École de Technologie Supérieure(ÉTS)construction engineering research funding.
文摘Conventional numerical solutions developed to describe the geomechanical behavior of rock interfaces subjected to differential load emphasize peak and residual shear strengths.The detailed analysis of preand post-peak shear stress-displacement behavior is central to various time-dependent and dynamic rock mechanic problems such as rockbursts and structural instabilities in highly stressed conditions.The complete stress-displacement surface(CSDS)model was developed to describe analytically the pre-and post-peak behavior of rock interfaces under differential loads.Original formulations of the CSDS model required extensive curve-fitting iterations which limited its practical applicability and transparent integration into engineering tools.The present work proposes modifications to the CSDS model aimed at developing a comprehensive and modern calibration protocol to describe the complete shear stressdisplacement behavior of rock interfaces under differential loads.The proposed update to the CSDS model incorporates the concept of mobilized shear strength to enhance the post-peak formulations.Barton’s concepts of joint roughness coefficient(JRC)and joint compressive strength(JCS)are incorporated to facilitate empirical estimations for peak shear stress and normal closure relations.Triaxial/uniaxial compression test and direct shear test results are used to validate the updated model and exemplify the proposed calibration method.The results illustrate that the revised model successfully predicts the post-peak and complete axial stressestrain and shear stressedisplacement curves for rock joints.
文摘Objective:Autosomal recessive bestrophinopathy(ARB),a retinal degenerative disease,is characterized by central visual loss,yellowish multifocal diffuse subretinal deposits,and a dramatic decrease in the light peak on electrooculogram.The potential pathogenic mechanism involves mutations in the BEST1 gene,which encodes Ca2+-activated Cl−channels in the retinal pigment epithelium(RPE),resulting in degeneration of RPE and photoreceptor.In this study,the complete clinical characteristics of two Chinese ARB families were summarized.Methods:Pacific Biosciences(PacBio)single-molecule real-time(SMRT)sequencing was performed on the probands to screen for disease-causing gene mutations,and Sanger sequencing was applied to validate variants in the patients and their family members.Results:Two novel mutations,c.202T>C(chr11:61722628,p.Y68H)and c.867+97G>A,in the BEST1 gene were identified in the two Chinese ARB families.The novel missense mutation BEST1 c.202T>C(p.Y68H)resulted in the substitution of tyrosine with histidine in the N-terminal region of transmembrane domain 2 of bestrophin-1.Another novel variant,BEST1 c.867+97G>A(chr11:61725867),located in intron 7,might be considered a regulatory variant that changes allele-specific binding affinity based on motifs of important transcriptional regulators.Conclusion:Our findings represent the first use of third-generation sequencing(TGS)to identify novel BEST1 mutations in patients with ARB,indicating that TGS can be a more accurate and efficient tool for identifying mutations in specific genes.The novel variants identified further broaden the mutation spectrum of BEST1 in the Chinese population.
文摘Lug joints are preferred joineries for transferring heavy loads to parent components in aerospace vehicles.They experience corrosion due to environmental conditions,improper surface finishes and rubbing displacement between the pin and lug-hole.This causes damage of different sizes and shapes near the lug-hole.Stiffness degradation due to corrosion-induced damage is modelled as a through-pit at one of the identified critical locations through stress analysis.The effect of this pit on fatigue crack initiation life is estimated.Lug-hole is pre-stressed by cold-working and the benefits of inducing plastic wake on the intended performance of the lug joint during the damages due to corrosion are brought out and compared with non-cold-worked lug-hole.Numerical analysis is performed on this lug joint with pressfit.The results obtained highlight the benefits of cold-working and the methodology can be extended to damage growth and analyse the effect of surface treatments for better structural integrity of components of aerospace vehicles.
基金fully supported by a Tabung Amanah Pusat Pengurusan Penyelidikan&Inovasi(PPPI)(Grant No.PS060-UPNM/2023/GPPP/SG/1)Universiti Pertahanan Nasional Malaysia(UPNM)for funding this study。
文摘Solder joint,crucial component in electronic systems,face significant challenges when exposed to extreme conditions during applications.The solder joint reliability involving microstructure and mechanical properties will be affected by extreme conditions.Understanding the behaviour of solder joints under extreme conditions is vital to determine the durability and reliability of solder joint.This review paper aims to comprehensively explore the underlying failure mechanism affecting solder joint reliability under extreme conditions.This study covers an in-depth analysis of effect extreme temperature,mechanical stress,and radiation conditions towards solder joint.Impact of each condition to the microstructure including solder matrix and intermetallic compound layer,and mechanical properties such as fatigue,shear strength,creep,and hardness was thoroughly discussed.The failure mechanisms were illustrated in graphical diagrams to ensure clarity and understanding.Furthermore,the paper highlighted mitigation strategies that enhancing solder joint reliability under challenging operating conditions.The findings offer valuable guidance for researchers,engineers,and practitioners involved in electronics,engineering,and related fields,fostering advancements in solder joint reliability and performance.
文摘The Backscatter communication has gained widespread attention from academia and industry in recent years. In this paper, A method of resource allocation and trajectory optimization is proposed for UAV-assisted backscatter communication based on user trajectory. This paper will establish an optimization problem of jointly optimizing the UAV trajectories, UAV transmission power and BD scheduling based on the large-scale channel state signals estimated in advance of the known user trajectories, taking into account the constraints of BD data and working energy consumption, to maximize the energy efficiency of the system. The problem is a non-convex optimization problem in fractional form, and there is nonlinear coupling between optimization variables.An iterative algorithm is proposed based on Dinkelbach algorithm, block coordinate descent method and continuous convex optimization technology. First, the objective function is converted into a non-fractional programming problem based on Dinkelbach method,and then the block coordinate descent method is used to decompose the original complex problem into three independent sub-problems. Finally, the successive convex approximation method is used to solve the trajectory optimization sub-problem. The simulation results show that the proposed scheme and algorithm have obvious energy efficiency gains compared with the comparison scheme.
基金supported by the National Natural Science Funds of China(No.52175290 and No.51975090).
文摘A series of Zn-xAl(x=0-35 wt.%)alloy filler metals were designed to join AZ31 Mg alloy to 6061 Al alloy by laser-TIG hybrid welding.The effect of Al content on the wettability of filler metals,microstructure evolution and strength of joint was investigated.The results indicated that the strength of joints was improved with the increase of Al content in filler metals.When Zn-15Al filler was used,the ultimate fracture load reached the maximum of 1475.3 N/cm,which was increased by 28%than that with pure Zn filler.The reason is that the Al element acts as a"reaction depressant"in filler metal,which contributes to inhibiting the dissolution of Mg base metal and the Mg-Zn reaction.The addition of appropriate quantity of Al element promoted the precipitation of Al-rich solid solution instead of Zn solid solution.The MgZn_(2) IMCs have lower lattice mismatch with Al solid solution than Zn solid solution,thus the strength of joints is improved.However,the excessive addition of Al caused the formation of brittle Mg32(Al,Zn)49 ternary compounds,leading to the deterioration of joint performance.
基金funded by the China Manned Space Program (Grant Y59003AC40)TM-1 Constellation Atmospheric Density Detector (Grant E3C1162110)
文摘The response of thermosphere density to geomagnetic storms is a complicated physical process.Multi-satellite joint observations at the same altitude but different local times(LTs)are important for understanding this process;however,until now such studies have hardly been done.In this report,we analyze in detail the thermosphere mass density response at 510 km during the April 23−24,2023 geomagnetic storm using data derived from the TM-1(TianMu-1)satellite constellation and Swarm-B satellites.The observations show that there were significant LT differences in the hemispheric asymmetry of the thermosphere mass density during the geomagnetic storm.Densities observed by satellite TM02 at nearly 11.3 and 23.3 LTs were larger in the northern hemisphere than in the southern.The TM04 dayside density observations appear to be almost symmetrical with respect to the equator,though southern hemisphere densities on the nightside were higher.Swarm-B data exhibit near-symmetry between the hemispheres.In addition,the mass density ratio results show that TM04 nightside observations,TM02 data,and Swarm-B data all clearly show stronger effects in the southern hemisphere,except for TM04 on the dayside,which suggest hemispheric near-symmetry.The South-North density enhancement differences in TM02 and TM04 on dayside can reach 130%,and Swarm-B data even achieve 180%difference.From the observations of all three satellites,large-scale traveling atmospheric disturbances(TADs)first appear at high latitudes and propagate to low latitudes,thereby disturbing the atmosphere above the equator and even into the opposite hemisphere.NRLMSISE00 model simulations were also performed on this geomagnetic storm.TADs are absent in the NRLMSISE00 simulations.The satellite data suggest that NRLMSISE00 significantly underestimates the magnitude of the density response of the thermosphere during geomagnetic storms,especially at high latitudes in both hemispheres.Therefore,use of the density simulation of NRLMSISE00 may lead to large errors in satellite drag calculations and orbit predictions.We suggest that the high temporal and spatial resolution of direct density observations by the TM-1 constellation satellites can provide an autonomous and reliable basis for correction and improvement of atmospheric models.