Robust minimum class variance twin support vector machine(RMCV-TWSVM) presented previously gets better classification performance than the classical TWSVM. The RMCV-TWSVM introduces the class variance matrix of positi...Robust minimum class variance twin support vector machine(RMCV-TWSVM) presented previously gets better classification performance than the classical TWSVM. The RMCV-TWSVM introduces the class variance matrix of positive and negative samples into the construction of two hyperplanes. However, it does not consider the total structure information of all the samples, which can substantially reduce its classification accuracy. In this paper, a new algorithm named structural regularized TWSVM based on within-class scatter and between-class scatter(WSBS-STWSVM) is put forward. The WSBS-STWSVM can make full use of the total within-class distribution information and between-class structure information of all the samples. The experimental results illustrate high classification accuracy and strong generalization ability of the proposed algorithm.展开更多
Mainstream line is significant for the Yellow River situation forecasting and flood control.An effective statistical feature extraction method is proposed in this paper.In this method, a between-class scattering matri...Mainstream line is significant for the Yellow River situation forecasting and flood control.An effective statistical feature extraction method is proposed in this paper.In this method, a between-class scattering matrix based projection algorithm is performed to maximize between-class differences, obtaining effective component for classification;then high-order statistics are utilized as the features to describe the mainstream line in the principal component obtained.Experiments are performed to verify the applicability of the algorithm.The results both on synthesized and real scenes indicate that this approach could extract the mainstream line of the Yellow River automatically, and has a high precision in mainstream line detection.展开更多
基金supported in part by the National Natural Science Foundation of China (51875457)Natural Science Foundation of Shaanxi Province of China (2021JQ-701)Xi’an Science and Technology Plan Project (2020KJRC0109)。
文摘Robust minimum class variance twin support vector machine(RMCV-TWSVM) presented previously gets better classification performance than the classical TWSVM. The RMCV-TWSVM introduces the class variance matrix of positive and negative samples into the construction of two hyperplanes. However, it does not consider the total structure information of all the samples, which can substantially reduce its classification accuracy. In this paper, a new algorithm named structural regularized TWSVM based on within-class scatter and between-class scatter(WSBS-STWSVM) is put forward. The WSBS-STWSVM can make full use of the total within-class distribution information and between-class structure information of all the samples. The experimental results illustrate high classification accuracy and strong generalization ability of the proposed algorithm.
基金supported by the Flood Control Foundation of Yellow River Conservancy Commissionthe 2007 Key Supporting Project on Undergraduate Graduation Thesis of North-western Polytechnical University.
文摘Mainstream line is significant for the Yellow River situation forecasting and flood control.An effective statistical feature extraction method is proposed in this paper.In this method, a between-class scattering matrix based projection algorithm is performed to maximize between-class differences, obtaining effective component for classification;then high-order statistics are utilized as the features to describe the mainstream line in the principal component obtained.Experiments are performed to verify the applicability of the algorithm.The results both on synthesized and real scenes indicate that this approach could extract the mainstream line of the Yellow River automatically, and has a high precision in mainstream line detection.