In a factorial ring, we can define the p.g.c.d. of two elements (defined to the nearest unit) and the notion of prime elements between them. More generally, Bezout’s identity characterizes two prime elements in a mai...In a factorial ring, we can define the p.g.c.d. of two elements (defined to the nearest unit) and the notion of prime elements between them. More generally, Bezout’s identity characterizes two prime elements in a main ring. A ring that satisfies the property of the theorem is called a Bezout ring. We have given some geometry theorems that can be proved algebraically, although the methods of geometry and, in particular, of projective geometry are by far the most beautiful. Most geometric problems actually involve polynomial equations and can be translated into the language of polynomial ideals. We have given a few examples of a different nature without pretending to make a general theory.展开更多
文摘In a factorial ring, we can define the p.g.c.d. of two elements (defined to the nearest unit) and the notion of prime elements between them. More generally, Bezout’s identity characterizes two prime elements in a main ring. A ring that satisfies the property of the theorem is called a Bezout ring. We have given some geometry theorems that can be proved algebraically, although the methods of geometry and, in particular, of projective geometry are by far the most beautiful. Most geometric problems actually involve polynomial equations and can be translated into the language of polynomial ideals. We have given a few examples of a different nature without pretending to make a general theory.