Lithium metal batteries(LMBs) promise energy density over 400 Wh kg^(-1).However,they suffer severe electrochemical performance deterioration at sub-zero temperatures.Such failure behavior highly correlates to inferio...Lithium metal batteries(LMBs) promise energy density over 400 Wh kg^(-1).However,they suffer severe electrochemical performance deterioration at sub-zero temperatures.Such failure behavior highly correlates to inferior lithium metal anode(LMA) compatibility and sluggish Li^(+) desolvation.Here,we demonstrate that cyclopentylmethyl ether(CPME) based diluted high-concentration electrolyte(DHCE)enables-60℃ LMBs operation.By leveraging the loose coordination between Li^(+) and CPME,such developed electrolyte boosts the formation of ion clusters to derive anion-dominant interfacial chemistry for enhancing LMA compatibility and greatly accelerates Li^(+) desolvation kinetics.The resulting electrolyte demonstrates high Coulombic efficiencies(CE),providing over 99.5%,99.1%,98.5% and 95% at 25,-20,-40,and-60℃respectively.The assembled Li-S battery exhibits remarkable cyclic stability in-20,and-40℃ at 0.2 C charging and 0.5 C discharging.Even at-60℃,Li-S cell with this designed electrolyte retains> 70% of the initial capacity over 170 cycles.Besides,lithium metal coin cell and pouch cell with10 mg cm^(-2) high S cathode loading exhibit cycling stability at-20℃.This work offers an opportunity for rational designing electrolytes toward low temperature LMBs.展开更多
This paper examines the interface development between a single crystalline Ag matrix and core-shell AgnCom nanoclusters that have been deposited with energies varying between 0.25 eV and 1.5 eV per atom using computer...This paper examines the interface development between a single crystalline Ag matrix and core-shell AgnCom nanoclusters that have been deposited with energies varying between 0.25 eV and 1.5 eV per atom using computer modeling techniques. Clusters undergo deformation as a result of the slowing down;they may also become epitaxial with the substrate and maintain their core-shell structure. A detailed analysis of the effects of the cluster-surface interaction is conducted over a realistic size and energy range, and a model is created to show how clusters accumulate. It is discovered that both the silver shells and the cobalt cluster cores exhibit limited epitaxy with the substrate, and that the contact produced is only a few atomic layers thick. The effect is higher for Ag shells than for Co cores, and it is not very energy dependent.展开更多
Bis(15-crown-5)-stilbenes containing crown ether parts have been widely used in a variety of chemical applications,such as cation detectors,because of their ability to selectively bind to alkali metal cations,Bis(15-c...Bis(15-crown-5)-stilbenes containing crown ether parts have been widely used in a variety of chemical applications,such as cation detectors,because of their ability to selectively bind to alkali metal cations,Bis(15-crown-5)-stilbenes and its derivatives with complexation of one-or two-alkali metal cation(Li^(+),Na^(+)and K^(+))have been theoretically investigat-ed by quantum chemistry methods.The coordination of alkali cations results in partial shrinkage of crown ethers,which directly affected natural distribution analysis charges and molecular orbital energy levels.The number of alkali metal ions has significant effects on absorption spectra and mean second hyperpolarizability.When one alkali metal ion was added to the anticonformer of bis(15-crown-5)-stilbene,the absorption spectra were obvious-ly redshifted and the mean second hyperpolarizability values were slightly increased;while two alkali metal ions were added to bis(15-crown-5)-stilbene,the absorption spectra were ob-viously blue shifted and the mean second hyperpolarizability values decreased.On the other hand,as the radius of the alkali ions increased,the mean second hyperpolarizability values of the compounds increased gradually.It is indicated that the mean second hyperpolarizability value is sensitive to the number and radius of the alkali metal cations,thus the third order nonlinear optical response can be used as a signal to detect the number and type of alkali met-al ions.展开更多
Cu-Co bi-metal catalysts derived from CuO/LaCoO3 perovskite structure were prepared by one-step citrate complexing method, and the structure evolution reaction from CuO/LaCoO3 to Cu-Co2C/La202CO3 under 1-12 pretreatme...Cu-Co bi-metal catalysts derived from CuO/LaCoO3 perovskite structure were prepared by one-step citrate complexing method, and the structure evolution reaction from CuO/LaCoO3 to Cu-Co2C/La202CO3 under 1-12 pretreatment was investigated by techniques of XRD, TPR and TEM. The results suggest that a much higher dispersion of copper significantly enhanced the reduction of cobalt, and a stronger interaction between copper and cobalt ions in LaCoO3 particles led to the formation of bi-metallic Cu-Co particles in the reduced catalysts and the enrichment of Co on the surface of bimetallic particles. The prepared catalysts were highly active and selective for the alcohol synthesis from syngas due to the presence of copper-modified C02C species.展开更多
To predict the segregation effect in metal injection moulding (MIM) injection, a bi-phasic model based on mixture theory is adopted in simulation. An explicit algorithm is developed and realized by the authors, which ...To predict the segregation effect in metal injection moulding (MIM) injection, a bi-phasic model based on mixture theory is adopted in simulation. An explicit algorithm is developed and realized by the authors, which conducts the simulation to be a cost-effective tool in MIM technology. In case of the bi-phasic simulation, the viscosity behaviours are necessary to be determined for the flows of each phase while only the viscosity of mixture is measurable by tests. It is a crucial problem for application of the bi-phasic simulation of MIM injection. A reasonable method is hence analysed and proposed to determine the viscosity behaviours of each phase. Even though this method may be furthermore modified in the future, it results in the practical simulation of segregation effects with reasonable parameters. The simulation results are compared with the measurements on injected specimens.展开更多
The title coordination polymer 1,{[Cu8(btb)2(CN)8].3H2O}n(btb = 1,4-bis(1,2,4-triazol-1-yl)butane),has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction.Complex...The title coordination polymer 1,{[Cu8(btb)2(CN)8].3H2O}n(btb = 1,4-bis(1,2,4-triazol-1-yl)butane),has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction.Complex 1 crystallizes in monoclinic,space group C2/c with a = 1.2938(3),b = 1.9422(5),c = 0.9406(2) nm,β = 121.891(4)°,V = 2.0066(9) nm3,C24H30Cu8N20O3,Mr = 1155.00,Dc = 1.912 g/cm3,μ(MoKα) = 4.209 mm?1,F(000) = 1140,GOF = 1.184,Z = 2,the final R = 0.0634 and wR = 0.1503 for I 2σ(I).In complex 1,one-dimensional CuCN zigzag chains are linked by triazolyl groups of btb ligands to form two-dimensional networks,which are further bridged by 1,4-butyl moieties of btb ligands to fabricate a three-dimensional order framework,in which one-dimensional ellipsoid-like channels are observed.展开更多
Solvent extraction of base metals using bis((1-decylbenzimidazol-2-yl)methyl)amine (BDNNN) showed a lack of pH-metric separation of the metals. The extraction system was described quantitatively using the equilibria i...Solvent extraction of base metals using bis((1-decylbenzimidazol-2-yl)methyl)amine (BDNNN) showed a lack of pH-metric separation of the metals. The extraction system was described quantitatively using the equilibria involved to derive the mathematical explanation for the two linear log D vs pHe plots for each metal ion extraction curve, and coordination numbers could also be extracted from the two slopes. The lack of separation was attributed to the absence of stereochemical “tailor making” since the complexes isolated from the reaction of the ligand, bis((1H-benzimidazol- 2-yl)methyl)amine (NNN), with base metals suggested the formation of similar octahedral complex species from spectral and crystal structure evidence. The bis tridentate coordination observed was in agreement with information extracted from the extraction data. This investigation opens up an opportunity and an approach for the evaluation of amines as extractants but cautions against tridentate ligands.展开更多
Powder segregation induced by mold filling is an important phenomenon that affects the final quality of metal injection molding (MIM). The prediction of segregation in MIM requires a bi-phase flow model to describe ...Powder segregation induced by mold filling is an important phenomenon that affects the final quality of metal injection molding (MIM). The prediction of segregation in MIM requires a bi-phase flow model to describe distinctly the flows of metallic powder and polymer binder. Viscous behaviors for the flows of each phase should hence be determined. The coefficient of interaction between the flows of two phases should also be evaluated. However, only viscosity of the mixed feedstock is measurable by capillary tests. Wall sticking is supposed in the traditional model for capillary tests, while the wall slip is important to be taken into account in MIM injection. Objective of the present paper is to introduce the slip effect in bi-phase simulation, and search the suitable way to determine the viscous behaviors for each phase with the consideration of wall slip in capillary tests. Analytical and numerical methods were proposed to realize such a specific purpose. The proposed method is based on the mass conservation between the capillary flows in mono-phase model for the mixed feedstock and in bi-phase model for the flows of two phases. Examples of the bi-phase simulation in MIM were realized with the software developed by research team. The results show evident segregation, which is valuable for improving the mould designs.展开更多
The present work investigates the effect of europium substitution on the (Bi, Pb)-2212 system in the concentration range 0.5 ≤ x ≤1.0. Phase analysis and lattice parameter calculations on the powder diffraction da...The present work investigates the effect of europium substitution on the (Bi, Pb)-2212 system in the concentration range 0.5 ≤ x ≤1.0. Phase analysis and lattice parameter calculations on the powder diffraction data and the elemental analysis of EDX show that the Eu atoms are successfully substituted into the (Bi, Pb)-2212 system. Resistivity measurements (64-300 K) reveal that the system exhibits superconductivity at x ≤ 0.5 and semiconductivity at x 〉 0.5. With the complete suppression of superconductivity which is known to be a quasi-two dimensional phenomenon in these materials, a metal to insulator transition takes place at x = 0.6 and the predominant conduction mechanism is found to be variable range hopping between localized states, resulting in macroscopic semiconducting behaviour. The results of electrical and structural properties of the doped (Bi, Pb)-2212 compounds suggest that the decrease of charge carrier concentration and the induced structural disorder are the more effective and dominant mechanisms in the origin of the metal to insulator transition and suppression of superconductivity due to Eu substitution at its Sr site.展开更多
A new metal-organic framework, {Zn[Zn3(BTA)3(μ3-OH)(H2O)3]2}n 1, has been synthesized under hydrothermal reaction of ZnCl2 and bis(5-tetrazolyl)amine (H2BTA), and characterized by elemental analysis, FT-IR,...A new metal-organic framework, {Zn[Zn3(BTA)3(μ3-OH)(H2O)3]2}n 1, has been synthesized under hydrothermal reaction of ZnCl2 and bis(5-tetrazolyl)amine (H2BTA), and characterized by elemental analysis, FT-IR, Raman spectrum, X-ray single-crystal diffraction, TGA and photoluminescence measurements. Compound 1 crystallizes in the trigonal system, space group P-3cl, a = 13.667(3), c = 12.981(3) A, V = 2099.6(8) A3 and Z = 2. The BTA2- ligand in 1 assumes theμ3 tetradentate mode with both 1,2- and 1,4-tetrazole bridges, generating an unusual 2-D layer, in which the [Zn3(μ3-OH)] triangular motifs act as three-connecting nodes and the mononuclear Zn atoms as six-connecting nodes that are inter-linked by organic ligands. Adjacent 2-D metal-organic layers are linked by strong hydrogen bonds to form a novel 3-D supramolecular framework. Complex 1 exhibits blue fluorescence emission in the solid state at ambient temperature.展开更多
The oxygenation constants and thermodynamic parameter (ΔHo, ΔSo) of Co (II) complexes with unsymmetrical bis-Schiff baeses were measured and their Mn(III) complexes as models of mimicking monooxygenase were employed...The oxygenation constants and thermodynamic parameter (ΔHo, ΔSo) of Co (II) complexes with unsymmetrical bis-Schiff baeses were measured and their Mn(III) complexes as models of mimicking monooxygenase were employed to catalyze epoxidation of styrene. The effect of substituent R in a salicylidene of ML1~ML4 [ M = Co (II), Mn (III)Cl ] on the dioxygen affinities and biomimetic catalytic oxidation performance were also investigated. Among them, the MnL4Cl containing a pendant benzoaza crown ether ring showed highest conversion and selectiviy up to 54.9% and 96.9% respectively.展开更多
The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based...The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based aqueous energy storage devices. To address these challenges, this work proposes a dualfunction zinc anode protective layer, composed of Zn-Al-In layered double oxides(ILDO) by rationally designing Zn-Al layered double hydroxides(Zn-Al LDHs) for the first time. Differing from previous works on the LDHs coatings, firstly, the ILDO layer accelerates zinc-ion desolvation and also captures and anchors SO_(4)^(2-). Secondly, the in-situ formation of the Zn-In alloy phase effectively lowers the nucleation energy barrier, thereby regulating zinc nucleation. Consequently, the zinc anode with the ILDO protective layer demonstrates long-term stability exceeding 1900 h and low voltage hysteresis of 7.5 m V at 0.5 m A cm^(-2) and 0.5 m A h cm^(-2). Additionally, it significantly enhances the rate capability and cycling performance of Zn@ILDO//MnO_(2) full batteries and Zn@ILDO//activated carbon zinc-ion hybrid capacitors.This simple and effective dual-function protective layer strategy offers a promising approach for achieving high-performance zinc-ion batteries.展开更多
在导弹类金属-介质复合目标电磁散射特性求解过程中,采用常规迭代求解方法存在难以收敛以及内迭代边界积分区域重复求解的问题。针对该问题,在传统有限元边界积分区域分解法(finite element boundary integral domain decomposition met...在导弹类金属-介质复合目标电磁散射特性求解过程中,采用常规迭代求解方法存在难以收敛以及内迭代边界积分区域重复求解的问题。针对该问题,在传统有限元边界积分区域分解法(finite element boundary integral domain decomposition method,FE-BI-DDM)的基础上,采用了更为灵活的多区多求解器的方法(multi domain multi solver method,MDMSM)。该方法对导弹类金属-介质复合目标中难以收敛的金属区域,使用快速直接求逆的方法求解,由于可以使用独立的网格模型进行电磁建模,避免了内迭代部分的模型重复建立过程,从而大幅减少了整体模型求解时间。实验结果表明:所提方法可以在相同计算精度的条件下,以不过多增加内存空间为前提,大幅缩短了导弹类目标的金属-介质复合模型的电磁求解时间。该方法为开展导弹类目标特性分析提供了一条可行的技术途径。展开更多
The thermogravimetry (TG) and derivative thermogravimetry (DTG) have been used to study the thermal decomposition of some oxalyl (H<sub>4</sub>OxTSC), malonyl (H<sub>4</sub>MaTSC) and succinyl-...The thermogravimetry (TG) and derivative thermogravimetry (DTG) have been used to study the thermal decomposition of some oxalyl (H<sub>4</sub>OxTSC), malonyl (H<sub>4</sub>MaTSC) and succinyl-bis-4-phenyl- thiosemicarbazide (H<sub>4</sub>SuTSC) ligands and their metal complexes using Horowitz-Metzger (HM) and Coats-Redfern methods. The kinetic thermodynamic parameters such as: E<sup>*</sup>, ΔH<sup>*</sup>, ΔS<sup>*</sup>and ΔG<sup>*</sup> are calculated from the DTG curves. The isolated complexes have the general composition [M<sub>2</sub>(L) (H<sub>2</sub>O)<sub>6</sub>], where M=Cu(II), Zn(II), L=MaTSC and M=Co(II), Cu(II) or Sn(II) and L=Su TSC and [M<sub>2</sub>(L) (H<sub>2</sub>O)<sub>n</sub>]·nH<sub>2</sub>O where M=Cu(II), Co(II) or Sn(II), L=OxTS or Ma TSC. The tested compounds show a good activity against four strains of bacteria Gram negative Escherichia coli, Pseudomonas aeruginosa species and gram-positive Bacillus cereus and Staphylococcus aureus.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21975087,22008082)。
文摘Lithium metal batteries(LMBs) promise energy density over 400 Wh kg^(-1).However,they suffer severe electrochemical performance deterioration at sub-zero temperatures.Such failure behavior highly correlates to inferior lithium metal anode(LMA) compatibility and sluggish Li^(+) desolvation.Here,we demonstrate that cyclopentylmethyl ether(CPME) based diluted high-concentration electrolyte(DHCE)enables-60℃ LMBs operation.By leveraging the loose coordination between Li^(+) and CPME,such developed electrolyte boosts the formation of ion clusters to derive anion-dominant interfacial chemistry for enhancing LMA compatibility and greatly accelerates Li^(+) desolvation kinetics.The resulting electrolyte demonstrates high Coulombic efficiencies(CE),providing over 99.5%,99.1%,98.5% and 95% at 25,-20,-40,and-60℃respectively.The assembled Li-S battery exhibits remarkable cyclic stability in-20,and-40℃ at 0.2 C charging and 0.5 C discharging.Even at-60℃,Li-S cell with this designed electrolyte retains> 70% of the initial capacity over 170 cycles.Besides,lithium metal coin cell and pouch cell with10 mg cm^(-2) high S cathode loading exhibit cycling stability at-20℃.This work offers an opportunity for rational designing electrolytes toward low temperature LMBs.
文摘This paper examines the interface development between a single crystalline Ag matrix and core-shell AgnCom nanoclusters that have been deposited with energies varying between 0.25 eV and 1.5 eV per atom using computer modeling techniques. Clusters undergo deformation as a result of the slowing down;they may also become epitaxial with the substrate and maintain their core-shell structure. A detailed analysis of the effects of the cluster-surface interaction is conducted over a realistic size and energy range, and a model is created to show how clusters accumulate. It is discovered that both the silver shells and the cobalt cluster cores exhibit limited epitaxy with the substrate, and that the contact produced is only a few atomic layers thick. The effect is higher for Ag shells than for Co cores, and it is not very energy dependent.
基金surported by the Jilin Province Science and Technology Development Project(No.20220203017SF)Industrialization Project of the 13th Five-Year"Education Department of Jilin Province(No.JJKH20200334KJ)the National Natural Sci-ence Foundation of China(No.11704143).
文摘Bis(15-crown-5)-stilbenes containing crown ether parts have been widely used in a variety of chemical applications,such as cation detectors,because of their ability to selectively bind to alkali metal cations,Bis(15-crown-5)-stilbenes and its derivatives with complexation of one-or two-alkali metal cation(Li^(+),Na^(+)and K^(+))have been theoretically investigat-ed by quantum chemistry methods.The coordination of alkali cations results in partial shrinkage of crown ethers,which directly affected natural distribution analysis charges and molecular orbital energy levels.The number of alkali metal ions has significant effects on absorption spectra and mean second hyperpolarizability.When one alkali metal ion was added to the anticonformer of bis(15-crown-5)-stilbene,the absorption spectra were obvious-ly redshifted and the mean second hyperpolarizability values were slightly increased;while two alkali metal ions were added to bis(15-crown-5)-stilbene,the absorption spectra were ob-viously blue shifted and the mean second hyperpolarizability values decreased.On the other hand,as the radius of the alkali ions increased,the mean second hyperpolarizability values of the compounds increased gradually.It is indicated that the mean second hyperpolarizability value is sensitive to the number and radius of the alkali metal cations,thus the third order nonlinear optical response can be used as a signal to detect the number and type of alkali met-al ions.
基金supported by the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Provincethe Ph.D.Programs Foundation of Liaocheng University(No.31805)the NSF of China(21263011,21376170)
文摘Cu-Co bi-metal catalysts derived from CuO/LaCoO3 perovskite structure were prepared by one-step citrate complexing method, and the structure evolution reaction from CuO/LaCoO3 to Cu-Co2C/La202CO3 under 1-12 pretreatment was investigated by techniques of XRD, TPR and TEM. The results suggest that a much higher dispersion of copper significantly enhanced the reduction of cobalt, and a stronger interaction between copper and cobalt ions in LaCoO3 particles led to the formation of bi-metallic Cu-Co particles in the reduced catalysts and the enrichment of Co on the surface of bimetallic particles. The prepared catalysts were highly active and selective for the alcohol synthesis from syngas due to the presence of copper-modified C02C species.
文摘To predict the segregation effect in metal injection moulding (MIM) injection, a bi-phasic model based on mixture theory is adopted in simulation. An explicit algorithm is developed and realized by the authors, which conducts the simulation to be a cost-effective tool in MIM technology. In case of the bi-phasic simulation, the viscosity behaviours are necessary to be determined for the flows of each phase while only the viscosity of mixture is measurable by tests. It is a crucial problem for application of the bi-phasic simulation of MIM injection. A reasonable method is hence analysed and proposed to determine the viscosity behaviours of each phase. Even though this method may be furthermore modified in the future, it results in the practical simulation of segregation effects with reasonable parameters. The simulation results are compared with the measurements on injected specimens.
基金Supported by Nanjing University of Posts and Telecommunications (No. NY209032)the National Natural Science Foundation of China (No. 21001065)the Major State Basic Research Development Program of China (973 Program,No. 2009CB930600)
文摘The title coordination polymer 1,{[Cu8(btb)2(CN)8].3H2O}n(btb = 1,4-bis(1,2,4-triazol-1-yl)butane),has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction.Complex 1 crystallizes in monoclinic,space group C2/c with a = 1.2938(3),b = 1.9422(5),c = 0.9406(2) nm,β = 121.891(4)°,V = 2.0066(9) nm3,C24H30Cu8N20O3,Mr = 1155.00,Dc = 1.912 g/cm3,μ(MoKα) = 4.209 mm?1,F(000) = 1140,GOF = 1.184,Z = 2,the final R = 0.0634 and wR = 0.1503 for I 2σ(I).In complex 1,one-dimensional CuCN zigzag chains are linked by triazolyl groups of btb ligands to form two-dimensional networks,which are further bridged by 1,4-butyl moieties of btb ligands to fabricate a three-dimensional order framework,in which one-dimensional ellipsoid-like channels are observed.
文摘Solvent extraction of base metals using bis((1-decylbenzimidazol-2-yl)methyl)amine (BDNNN) showed a lack of pH-metric separation of the metals. The extraction system was described quantitatively using the equilibria involved to derive the mathematical explanation for the two linear log D vs pHe plots for each metal ion extraction curve, and coordination numbers could also be extracted from the two slopes. The lack of separation was attributed to the absence of stereochemical “tailor making” since the complexes isolated from the reaction of the ligand, bis((1H-benzimidazol- 2-yl)methyl)amine (NNN), with base metals suggested the formation of similar octahedral complex species from spectral and crystal structure evidence. The bis tridentate coordination observed was in agreement with information extracted from the extraction data. This investigation opens up an opportunity and an approach for the evaluation of amines as extractants but cautions against tridentate ligands.
基金Specialized Research Fund for the Doc-toral Program of Higher Education (No.20020613005)
文摘Powder segregation induced by mold filling is an important phenomenon that affects the final quality of metal injection molding (MIM). The prediction of segregation in MIM requires a bi-phase flow model to describe distinctly the flows of metallic powder and polymer binder. Viscous behaviors for the flows of each phase should hence be determined. The coefficient of interaction between the flows of two phases should also be evaluated. However, only viscosity of the mixed feedstock is measurable by capillary tests. Wall sticking is supposed in the traditional model for capillary tests, while the wall slip is important to be taken into account in MIM injection. Objective of the present paper is to introduce the slip effect in bi-phase simulation, and search the suitable way to determine the viscous behaviors for each phase with the consideration of wall slip in capillary tests. Analytical and numerical methods were proposed to realize such a specific purpose. The proposed method is based on the mass conservation between the capillary flows in mono-phase model for the mixed feedstock and in bi-phase model for the flows of two phases. Examples of the bi-phase simulation in MIM were realized with the software developed by research team. The results show evident segregation, which is valuable for improving the mould designs.
基金supported by Kerala State Council for Science,Technology and Environment,Council of Scientific and Industrial Researchthe University Grants Commission of India
文摘The present work investigates the effect of europium substitution on the (Bi, Pb)-2212 system in the concentration range 0.5 ≤ x ≤1.0. Phase analysis and lattice parameter calculations on the powder diffraction data and the elemental analysis of EDX show that the Eu atoms are successfully substituted into the (Bi, Pb)-2212 system. Resistivity measurements (64-300 K) reveal that the system exhibits superconductivity at x ≤ 0.5 and semiconductivity at x 〉 0.5. With the complete suppression of superconductivity which is known to be a quasi-two dimensional phenomenon in these materials, a metal to insulator transition takes place at x = 0.6 and the predominant conduction mechanism is found to be variable range hopping between localized states, resulting in macroscopic semiconducting behaviour. The results of electrical and structural properties of the doped (Bi, Pb)-2212 compounds suggest that the decrease of charge carrier concentration and the induced structural disorder are the more effective and dominant mechanisms in the origin of the metal to insulator transition and suppression of superconductivity due to Eu substitution at its Sr site.
基金supported by the National Natural Science Foundation of China (Nos.50632030 and 10474077)
文摘A new metal-organic framework, {Zn[Zn3(BTA)3(μ3-OH)(H2O)3]2}n 1, has been synthesized under hydrothermal reaction of ZnCl2 and bis(5-tetrazolyl)amine (H2BTA), and characterized by elemental analysis, FT-IR, Raman spectrum, X-ray single-crystal diffraction, TGA and photoluminescence measurements. Compound 1 crystallizes in the trigonal system, space group P-3cl, a = 13.667(3), c = 12.981(3) A, V = 2099.6(8) A3 and Z = 2. The BTA2- ligand in 1 assumes theμ3 tetradentate mode with both 1,2- and 1,4-tetrazole bridges, generating an unusual 2-D layer, in which the [Zn3(μ3-OH)] triangular motifs act as three-connecting nodes and the mononuclear Zn atoms as six-connecting nodes that are inter-linked by organic ligands. Adjacent 2-D metal-organic layers are linked by strong hydrogen bonds to form a novel 3-D supramolecular framework. Complex 1 exhibits blue fluorescence emission in the solid state at ambient temperature.
文摘The oxygenation constants and thermodynamic parameter (ΔHo, ΔSo) of Co (II) complexes with unsymmetrical bis-Schiff baeses were measured and their Mn(III) complexes as models of mimicking monooxygenase were employed to catalyze epoxidation of styrene. The effect of substituent R in a salicylidene of ML1~ML4 [ M = Co (II), Mn (III)Cl ] on the dioxygen affinities and biomimetic catalytic oxidation performance were also investigated. Among them, the MnL4Cl containing a pendant benzoaza crown ether ring showed highest conversion and selectiviy up to 54.9% and 96.9% respectively.
基金Natural Science Foundation of Hunan Province (No.2020JJ4734)High Performance Computing Center of Central South University。
文摘The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based aqueous energy storage devices. To address these challenges, this work proposes a dualfunction zinc anode protective layer, composed of Zn-Al-In layered double oxides(ILDO) by rationally designing Zn-Al layered double hydroxides(Zn-Al LDHs) for the first time. Differing from previous works on the LDHs coatings, firstly, the ILDO layer accelerates zinc-ion desolvation and also captures and anchors SO_(4)^(2-). Secondly, the in-situ formation of the Zn-In alloy phase effectively lowers the nucleation energy barrier, thereby regulating zinc nucleation. Consequently, the zinc anode with the ILDO protective layer demonstrates long-term stability exceeding 1900 h and low voltage hysteresis of 7.5 m V at 0.5 m A cm^(-2) and 0.5 m A h cm^(-2). Additionally, it significantly enhances the rate capability and cycling performance of Zn@ILDO//MnO_(2) full batteries and Zn@ILDO//activated carbon zinc-ion hybrid capacitors.This simple and effective dual-function protective layer strategy offers a promising approach for achieving high-performance zinc-ion batteries.
文摘在导弹类金属-介质复合目标电磁散射特性求解过程中,采用常规迭代求解方法存在难以收敛以及内迭代边界积分区域重复求解的问题。针对该问题,在传统有限元边界积分区域分解法(finite element boundary integral domain decomposition method,FE-BI-DDM)的基础上,采用了更为灵活的多区多求解器的方法(multi domain multi solver method,MDMSM)。该方法对导弹类金属-介质复合目标中难以收敛的金属区域,使用快速直接求逆的方法求解,由于可以使用独立的网格模型进行电磁建模,避免了内迭代部分的模型重复建立过程,从而大幅减少了整体模型求解时间。实验结果表明:所提方法可以在相同计算精度的条件下,以不过多增加内存空间为前提,大幅缩短了导弹类目标的金属-介质复合模型的电磁求解时间。该方法为开展导弹类目标特性分析提供了一条可行的技术途径。
文摘The thermogravimetry (TG) and derivative thermogravimetry (DTG) have been used to study the thermal decomposition of some oxalyl (H<sub>4</sub>OxTSC), malonyl (H<sub>4</sub>MaTSC) and succinyl-bis-4-phenyl- thiosemicarbazide (H<sub>4</sub>SuTSC) ligands and their metal complexes using Horowitz-Metzger (HM) and Coats-Redfern methods. The kinetic thermodynamic parameters such as: E<sup>*</sup>, ΔH<sup>*</sup>, ΔS<sup>*</sup>and ΔG<sup>*</sup> are calculated from the DTG curves. The isolated complexes have the general composition [M<sub>2</sub>(L) (H<sub>2</sub>O)<sub>6</sub>], where M=Cu(II), Zn(II), L=MaTSC and M=Co(II), Cu(II) or Sn(II) and L=Su TSC and [M<sub>2</sub>(L) (H<sub>2</sub>O)<sub>n</sub>]·nH<sub>2</sub>O where M=Cu(II), Co(II) or Sn(II), L=OxTS or Ma TSC. The tested compounds show a good activity against four strains of bacteria Gram negative Escherichia coli, Pseudomonas aeruginosa species and gram-positive Bacillus cereus and Staphylococcus aureus.