Bi-directional static loading test adopting load cells is widely used around the world at present, with increase in diameter and length of deep foundations. In this paper, a new simple conversion method to predict the...Bi-directional static loading test adopting load cells is widely used around the world at present, with increase in diameter and length of deep foundations. In this paper, a new simple conversion method to predict the equivalent pile head load-settlement curve considering elastic shortening of deep foundation was put forward according to the load transfer mechanism. The proposed conversion method was applied to root caisson foundation in a bridge and to large diameter pipe piles in a sea wind power plant. Some new load cells, test procedure, and construction technology were adopted based on the applications to different deep foundations, which could enlarge the application scopes of bi-directional loading test. A new type of bi-directional loading test for pipe pile was conducted, in which the load cell was installed and loaded after the pipe pile with special connector has been set up. Unlike the conventional bi-directional loading test, the load cell can be reused and shows an evident economic benefit.展开更多
A unified stress function for bi-modulus beams is proposed based on its mechanic sense on the boundary of beams. Elasticity solutions of stress and displacement for bi-modulus beams under combined loads are derived. T...A unified stress function for bi-modulus beams is proposed based on its mechanic sense on the boundary of beams. Elasticity solutions of stress and displacement for bi-modulus beams under combined loads are derived. The example analysis shows that the maximum tensile stress using the same elastic modulus theory is underestimated if the tensile elastic modulus is larger than the compressive elastic modulus. Otherwise, the maximum compressive stress is underestimated. The maximum tensile stress using the material mechanics solution is underestimated when the tensile elastic modulus is larger than the compressive elastic modulus to a certain extent. The error of stress using the material mechanics theory decreases as the span-to-height ratio of beams increases, which is apparent when L/h ≤ 5. The error also varies with the distributed load patterns.展开更多
住宅短期电力负荷预测是一种关键应用场景,能够为电力公司和用户提供实时且准确的用电负荷预估,实现最优调度并合理分配电力资源。提出了一种基于双向长短期记忆(Bi-directional Long Short-Term Memory,BiLSTM)和卷积神经网络(Convolut...住宅短期电力负荷预测是一种关键应用场景,能够为电力公司和用户提供实时且准确的用电负荷预估,实现最优调度并合理分配电力资源。提出了一种基于双向长短期记忆(Bi-directional Long Short-Term Memory,BiLSTM)和卷积神经网络(Convolutional Neural Network,CNN)的CNN-BiLSTM预测模型。利用CNN对原始负载数据进行特征提取,以降低输入数据的维度并提高模型的运行效率;将提取的特征输入BiLSTM和CNN-BiLSTM模型中进行预测。该方法已在实际住宅负荷数据集上进行了验证,预测结果好于传统的基于时间序列的预测方法。这表明该方法在短期住宅负荷预测领域中具有广泛的应用前景。展开更多
基金Supported by the National Natural Science Foundation of China (50908048)the Priority Academic Program Development (PAPD) Project of JiangsuHigher Education Institutions
文摘Bi-directional static loading test adopting load cells is widely used around the world at present, with increase in diameter and length of deep foundations. In this paper, a new simple conversion method to predict the equivalent pile head load-settlement curve considering elastic shortening of deep foundation was put forward according to the load transfer mechanism. The proposed conversion method was applied to root caisson foundation in a bridge and to large diameter pipe piles in a sea wind power plant. Some new load cells, test procedure, and construction technology were adopted based on the applications to different deep foundations, which could enlarge the application scopes of bi-directional loading test. A new type of bi-directional loading test for pipe pile was conducted, in which the load cell was installed and loaded after the pipe pile with special connector has been set up. Unlike the conventional bi-directional loading test, the load cell can be reused and shows an evident economic benefit.
基金Project supported by the Doctoral Fund of Ministry of Education of China(No.20103108110019)the National Natural Science Foundation of China(No.51208292)the National Key Technology R&D Programs(Nos.2011BAG07B01 and 2012BAK24B04)
文摘A unified stress function for bi-modulus beams is proposed based on its mechanic sense on the boundary of beams. Elasticity solutions of stress and displacement for bi-modulus beams under combined loads are derived. The example analysis shows that the maximum tensile stress using the same elastic modulus theory is underestimated if the tensile elastic modulus is larger than the compressive elastic modulus. Otherwise, the maximum compressive stress is underestimated. The maximum tensile stress using the material mechanics solution is underestimated when the tensile elastic modulus is larger than the compressive elastic modulus to a certain extent. The error of stress using the material mechanics theory decreases as the span-to-height ratio of beams increases, which is apparent when L/h ≤ 5. The error also varies with the distributed load patterns.