In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chlo- ride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Py...In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chlo- ride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Pyrex tube surrounded by a DC variable magnetic field. The chemi- cal changes that appeared on the surface of the samples were investigated using Fourier transform infrared (FT4R) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR- FTIR) spectroscopy after treatment for 2 min, 4 min and 6 rain in a nitrogen plasma chamber. Effects of the plasma treatment on the surface topographies and contact angles of the untreated and plasma treated films were also analyzed by atomic force microscopy (AFM) and a contact angle measuring system. The results show that the plasma treated films become more hydrophilic with an enhanced wettability due to the formation of some new polar groups on the surface of the treated films. Moreover, at higher exposure times, the total surface energy in all treated films increased while a reduction in contact angle occurred. The behavior of surface roughness in each sample was completely different at higher exposure times.展开更多
Electron microscope and electron diffraction have been used to study epitaxial crystallization of poly(ε-caprolactone)(PCL).on highly oriented film of isotactic polypropylene(iPP).The results obtained from bright fie...Electron microscope and electron diffraction have been used to study epitaxial crystallization of poly(ε-caprolactone)(PCL).on highly oriented film of isotactic polypropylene(iPP).The results obtained from bright field(BF)electron micrograph and electron diffraction indicate that the PCL can epitaxially grow on iPP substrate and form cross-hatched lamellar texture.The c axes of PCL are ±500 apart from the c axes of iPP. The contact planes of the two kinds of crystals are(010)of iPP and(100) of PCL,respectively.展开更多
Most of the articles on polymer nanocomposites focus on the importance of chemistry used to modify the surface of the clay, usually montmorillonite (MMT), and characterization of the nano-scale structure obtained. The...Most of the articles on polymer nanocomposites focus on the importance of chemistry used to modify the surface of the clay, usually montmorillonite (MMT), and characterization of the nano-scale structure obtained. The role and importance of processing were also discussed recently. However, few papers concerning the correlation between morphology of MMT and mechanical properties were published. In order to understand. the tensile behavior of PP/Montmorillonite (MMT) nanocomposites better, and to further improve the reinforcement efficiency, we first prepared the PP nanocomposites via direct melt intercalation using conventional twin-screw extrusion. The dispersion and tensile property of the composites were then investigated by SEM, XRD, TEM and a video-controlled tensile set-up. The macroscopic and microscopic dispersion of MMT in PP matrix was verified by XRD and TEM, combined with SEM. The tensile properties were obtained by video-controlled tensile set-up, which gives true stress-strain curve. It was found that a partly intercalated and partly exfoliated structure (also called incomplete exfoliation) existed in the system. Though the tensile strength of PP nanocomposites is not much improved in engineering stress-strain curves, more than 20% increase of true stress was found in a true stress-strain experiment at high true strain, which indicates that only oriented silicate layers can have a big effect on tensile properties: Not only orientation of silicate platelets but also the degree of exfoliation is a key factor to determine the reinforcement efficiency. The reinforcement efficiency of MMT has been discussed based on the 'continuum' Halpin-Tsai equations. A good agreement was found between experimental data and theoretical prediction by changing N value (number of platelets per stack) which corresponding to different state of the dispersion of MMT in PP matrix.展开更多
The orientation and crystallinity evolution of isotactic polypropylene (iPP) induced by rolling were studied using wide angle X-ray scattering with an area detector. The tensile mechanical properties of rolled isota...The orientation and crystallinity evolution of isotactic polypropylene (iPP) induced by rolling were studied using wide angle X-ray scattering with an area detector. The tensile mechanical properties of rolled isotactic polypropylene sheets were also measured in this work. The texture component method was used to analyze the rolling texture. The rolling texture consists mainly of (010)[001], (130)[001] and [001]//RD fiber components in the sample with a rolling true strain of 1.5. The results reveal that crystallinity drastically decreases during rolling. It is suggested that amorphization is a deformation mechanism which takes place as an alternative to crystallographic intralamellar slip depending on the orientation of the lamellae. Both the orientation and crystallinity affect the tensile mechanical properties of rolled polypropylene. Crystallinity influences the elastic modulus on both directions and yield strength on transverse direction at the first stage of deformation. Orientation is the main reason for the changes of mechanical properties, especially at the latter part of deformation. The changes of both tensile strength and elongation percentage on rolling direction are larger than those on transverse direction, which results from the orientation. At last, the anisotropic mechanical properties occur on the rolling and transverse direction: high tensile strength with low elongation percentage on rolling direction and low tensile strength with high elongation percentage on transverse direction.展开更多
The hierarchical structure and interfacial morphology of injection-molded bars of polypropylene (PP) based blends and composites have been investigated in detail from the skin to the core. For preparation of injecti...The hierarchical structure and interfacial morphology of injection-molded bars of polypropylene (PP) based blends and composites have been investigated in detail from the skin to the core. For preparation of injection-molded bars with high-level orientation and good interfacial adhesion, a dynamic packing injection molding technology was applied to exert oscillatory shear on the melts during solidification stage. Depending on incorporated component, interfacial adhesion and processing conditions, various oriented structure and morphology could be obtained. First, we will elucidate the epitaxial behavior between PP and high-density polyethylene occurring in practical molded processing. Then, the shear-induced transcrystalline structure will be the main focus for PP/fiber composites. At last, various oriented clay structures have been ascertained unambiguously in PP/organoclay nanocomposites along the thickness of molded bars.展开更多
The melt memory effect is a widely observed phenomenon in semi-crystalline polymers. In practical applications, various additives are usually introduced into polymers, which may affect their melt memory behavior. In t...The melt memory effect is a widely observed phenomenon in semi-crystalline polymers. In practical applications, various additives are usually introduced into polymers, which may affect their melt memory behavior. In this work, the effect of talc on the melt memory effect of metallocene-made isotactic polypropylene(M-PP) was investigated in detail by using the differential scanning calorimetry. The results indicated that the introduction of talc significantly strengthened the melt memory effect of M-PP. Specifically, the upper limit temperature of Domain II increased from 161 ℃ to 174 ℃, resulting in a substantial widening of the temperature range of Domain IIa from 1 ℃ to 14 ℃. Analysis of the crystal orientation of the M-PP containing talc cooled from various Ts suggested that the remarkably enhanced melt memory effect could be ascribed to the stabilization of oriented nuclei facilitated by talc. This stabilizing effect was likely attributable to the prefreezing effect or the sorption interaction between talc and the M-PP chains.展开更多
Heat sealing properties are optimized by controlling temperature, pressure and dwell time, while film strength depends on the drawn ratio and the molecular orientation of the film. However, heat seal strength of polym...Heat sealing properties are optimized by controlling temperature, pressure and dwell time, while film strength depends on the drawn ratio and the molecular orientation of the film. However, heat seal strength of polymer films with high drawn ratio shows lower peel strength, because the adhesion of films needs a higher heat sealing energy for molecular orientation relaxation at heat sealing. In the present study, polypropylene films with a drawn ratio of 1.0×, 1.5×, and 2.5× are heat sealed by using the heat sealing technique. The heat sealing condition is set to heat sealing time 1.0 s, sealing pressure 0.2 MPa, and heat sealing temperature 145°C. The effect of drawn ratio and stabilization temperature of PP films for peel strength are investigated using T-Peel test, DSC, FT-IR, and Raman spectroscopy. As a result, it is found that the peel strength is decreased with increasing the drawn ratio and stabilization temperature of PP films. The difference of ?H and melting point from the result of DSC measurement are exhibited for 1.5× drawn ratio film as compared with 2.5× one. In addition, FT-IR imaging and Raman line mapping reveal the influence and variation of high order structure for heat sealed parts of the drawn PP films.展开更多
文摘In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chlo- ride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Pyrex tube surrounded by a DC variable magnetic field. The chemi- cal changes that appeared on the surface of the samples were investigated using Fourier transform infrared (FT4R) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR- FTIR) spectroscopy after treatment for 2 min, 4 min and 6 rain in a nitrogen plasma chamber. Effects of the plasma treatment on the surface topographies and contact angles of the untreated and plasma treated films were also analyzed by atomic force microscopy (AFM) and a contact angle measuring system. The results show that the plasma treated films become more hydrophilic with an enhanced wettability due to the formation of some new polar groups on the surface of the treated films. Moreover, at higher exposure times, the total surface energy in all treated films increased while a reduction in contact angle occurred. The behavior of surface roughness in each sample was completely different at higher exposure times.
文摘Electron microscope and electron diffraction have been used to study epitaxial crystallization of poly(ε-caprolactone)(PCL).on highly oriented film of isotactic polypropylene(iPP).The results obtained from bright field(BF)electron micrograph and electron diffraction indicate that the PCL can epitaxially grow on iPP substrate and form cross-hatched lamellar texture.The c axes of PCL are ±500 apart from the c axes of iPP. The contact planes of the two kinds of crystals are(010)of iPP and(100) of PCL,respectively.
基金We would like to express our heartfelt thanks to the China National Distinguished Young Investigator Fund(29925413)National Natural Science Foundation of China(20274028)for financial support.
文摘Most of the articles on polymer nanocomposites focus on the importance of chemistry used to modify the surface of the clay, usually montmorillonite (MMT), and characterization of the nano-scale structure obtained. The role and importance of processing were also discussed recently. However, few papers concerning the correlation between morphology of MMT and mechanical properties were published. In order to understand. the tensile behavior of PP/Montmorillonite (MMT) nanocomposites better, and to further improve the reinforcement efficiency, we first prepared the PP nanocomposites via direct melt intercalation using conventional twin-screw extrusion. The dispersion and tensile property of the composites were then investigated by SEM, XRD, TEM and a video-controlled tensile set-up. The macroscopic and microscopic dispersion of MMT in PP matrix was verified by XRD and TEM, combined with SEM. The tensile properties were obtained by video-controlled tensile set-up, which gives true stress-strain curve. It was found that a partly intercalated and partly exfoliated structure (also called incomplete exfoliation) existed in the system. Though the tensile strength of PP nanocomposites is not much improved in engineering stress-strain curves, more than 20% increase of true stress was found in a true stress-strain experiment at high true strain, which indicates that only oriented silicate layers can have a big effect on tensile properties: Not only orientation of silicate platelets but also the degree of exfoliation is a key factor to determine the reinforcement efficiency. The reinforcement efficiency of MMT has been discussed based on the 'continuum' Halpin-Tsai equations. A good agreement was found between experimental data and theoretical prediction by changing N value (number of platelets per stack) which corresponding to different state of the dispersion of MMT in PP matrix.
文摘The orientation and crystallinity evolution of isotactic polypropylene (iPP) induced by rolling were studied using wide angle X-ray scattering with an area detector. The tensile mechanical properties of rolled isotactic polypropylene sheets were also measured in this work. The texture component method was used to analyze the rolling texture. The rolling texture consists mainly of (010)[001], (130)[001] and [001]//RD fiber components in the sample with a rolling true strain of 1.5. The results reveal that crystallinity drastically decreases during rolling. It is suggested that amorphization is a deformation mechanism which takes place as an alternative to crystallographic intralamellar slip depending on the orientation of the lamellae. Both the orientation and crystallinity affect the tensile mechanical properties of rolled polypropylene. Crystallinity influences the elastic modulus on both directions and yield strength on transverse direction at the first stage of deformation. Orientation is the main reason for the changes of mechanical properties, especially at the latter part of deformation. The changes of both tensile strength and elongation percentage on rolling direction are larger than those on transverse direction, which results from the orientation. At last, the anisotropic mechanical properties occur on the rolling and transverse direction: high tensile strength with low elongation percentage on rolling direction and low tensile strength with high elongation percentage on transverse direction.
基金This work was supported by the National Natural Science Foundation of China (Nos. 20404008, 50533050, 50373030 and 20490220). This work is subsidized by the Special Funds for Major State Basic Research Projects of China (No. 2003CB615600) by Ministry of Education of China as a key project (No. 104154).
文摘The hierarchical structure and interfacial morphology of injection-molded bars of polypropylene (PP) based blends and composites have been investigated in detail from the skin to the core. For preparation of injection-molded bars with high-level orientation and good interfacial adhesion, a dynamic packing injection molding technology was applied to exert oscillatory shear on the melts during solidification stage. Depending on incorporated component, interfacial adhesion and processing conditions, various oriented structure and morphology could be obtained. First, we will elucidate the epitaxial behavior between PP and high-density polyethylene occurring in practical molded processing. Then, the shear-induced transcrystalline structure will be the main focus for PP/fiber composites. At last, various oriented clay structures have been ascertained unambiguously in PP/organoclay nanocomposites along the thickness of molded bars.
基金financially supported by the National Natural Science Foundation of China (Nos. 51973037 and 52173056)PetroChina Company Limited,China。
文摘The melt memory effect is a widely observed phenomenon in semi-crystalline polymers. In practical applications, various additives are usually introduced into polymers, which may affect their melt memory behavior. In this work, the effect of talc on the melt memory effect of metallocene-made isotactic polypropylene(M-PP) was investigated in detail by using the differential scanning calorimetry. The results indicated that the introduction of talc significantly strengthened the melt memory effect of M-PP. Specifically, the upper limit temperature of Domain II increased from 161 ℃ to 174 ℃, resulting in a substantial widening of the temperature range of Domain IIa from 1 ℃ to 14 ℃. Analysis of the crystal orientation of the M-PP containing talc cooled from various Ts suggested that the remarkably enhanced melt memory effect could be ascribed to the stabilization of oriented nuclei facilitated by talc. This stabilizing effect was likely attributable to the prefreezing effect or the sorption interaction between talc and the M-PP chains.
文摘Heat sealing properties are optimized by controlling temperature, pressure and dwell time, while film strength depends on the drawn ratio and the molecular orientation of the film. However, heat seal strength of polymer films with high drawn ratio shows lower peel strength, because the adhesion of films needs a higher heat sealing energy for molecular orientation relaxation at heat sealing. In the present study, polypropylene films with a drawn ratio of 1.0×, 1.5×, and 2.5× are heat sealed by using the heat sealing technique. The heat sealing condition is set to heat sealing time 1.0 s, sealing pressure 0.2 MPa, and heat sealing temperature 145°C. The effect of drawn ratio and stabilization temperature of PP films for peel strength are investigated using T-Peel test, DSC, FT-IR, and Raman spectroscopy. As a result, it is found that the peel strength is decreased with increasing the drawn ratio and stabilization temperature of PP films. The difference of ?H and melting point from the result of DSC measurement are exhibited for 1.5× drawn ratio film as compared with 2.5× one. In addition, FT-IR imaging and Raman line mapping reveal the influence and variation of high order structure for heat sealed parts of the drawn PP films.