In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter e...In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter estimation method for LFM signals with a Duffing oscillator based on frequency periodicity is proposed in this paper.This method utilizes the characteristic that the output signal of the Duffing oscillator excited by the LFM signal changes periodically with frequency,and the modulation period of the LFM signal is estimated by autocorrelation processing of the output signal of the Duffing oscillator.On this basis,the corresponding relationship between the reference frequency of the frequencyaligned Duffing oscillator and the frequency range of the LFM signal is analyzed by the periodic power spectrum method,and the frequency information of the LFM signal is determined.Simulation results show that this method can achieve high-accuracy parameter estimation for LFM signals at an SNR of-25 dB.展开更多
This paper presents a novel approach to extract the periodic signals masked by a chaotic carrier. It verifies that the driven Duffing oscillator is immune to the chaotic carrier and sensitive to certain periodic signa...This paper presents a novel approach to extract the periodic signals masked by a chaotic carrier. It verifies that the driven Duffing oscillator is immune to the chaotic carrier and sensitive to certain periodic signals. A preliminary detection scenario illustrates that the frequency and amplitude of the hidden sine wave signal can be extracted from the chaotic carrier by numerical simulation. The obtained results indicate that the hidden messages in chaotic secure communication can be eavesdropped utilizing Duffing oscillators.展开更多
In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,wh...In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,when the performance index is complicated,because one may encounter a two-point boundary value problem of nonlinear differential algebraic equations.To be a numerical method,it is hard to exactly preserve all the specified conditions,which might deteriorate the accuracy of numerical solution.With this in mind,we develop a novel algorithm to find the solution of the optimal control problem of nonlinear Duffing oscillator,which can exactly satisfy all the required conditions for the minimality of the performance index.A new idea of shape functions method(SFM)is introduced,from which we can transform the optimal control problems to the initial value problems for the new variables,whose initial values are given arbitrarily,and meanwhile the terminal values are determined iteratively.Numerical examples confirm the high-performance of the iterative algorithms based on the SFM,which are convergence fast,and also provide very accurate solutions.The new algorithm is robust,even large noise is imposed on the input data.展开更多
This paper discusses a novel technique and implementation to perform nonlinear control for two different forced model state oscillators and actuators. The paper starts by discussing the Duffing oscillator which featur...This paper discusses a novel technique and implementation to perform nonlinear control for two different forced model state oscillators and actuators. The paper starts by discussing the Duffing oscillator which features a second order non-linear differential equation describing complex motion whereas the second model is the Van der Pol oscillator with non-linear damping. A first order actuator is added to both models to expand on the chaotic behavior of the oscillators. In order to control the system without comprising linearization, Lyapunov non-linear control was used. A control Lyapunov function was tailored to the system. This led to improved maneuverability of the controller and the performance of the overall system. The controller was found to be highly efficient in system tracking and had swift response time. Simulations were performed on both the uncontrolled and controlled cases. Both simulation results ultimately confirmed the effectiveness of the proposed controller.展开更多
The jump and bifurcation of Duffing oscillator with hardening spring subject to narrow-band random excitation are systematically and comprehensively examined. It is shown that, in a certain domain of the space of the ...The jump and bifurcation of Duffing oscillator with hardening spring subject to narrow-band random excitation are systematically and comprehensively examined. It is shown that, in a certain domain of the space of the oscillator and excitation parameters, there are two types of more probable motions in the stationary response of the Duffing oscillator and jumps may occur. The jump is a transition of the response from one more probable motion to another or vise versa. Outside the domain the stationary response is either nearly Gaussian or like a diffused limit cycle. As the parameters change across the boundary of the domain the qualitative behavior of the stationary response changes and it is a special kind of bifurcation. It is also shown that, for a set of specified parameters, the statistics are unique and they are independent of initial condition. It is pointed out that some previous results and interpretations on this problem are incorrect.展开更多
The stability of the periodic solution of the Duffing oscillator system in the periodic phase state is proved by using the Yoshizaw theorem, which establishes a theoretical basis for using this kind of chaotic oscilla...The stability of the periodic solution of the Duffing oscillator system in the periodic phase state is proved by using the Yoshizaw theorem, which establishes a theoretical basis for using this kind of chaotic oscillator system to detect weak signals. The restoring force term of the system affects the weak-signal detection ability of the system directly, the quantitative relationship between the coefficients of the linear and nonlinear items of the restoring force of the Duffing oscillator system and the SNR in the detection of weak signals is obtained through a large number of simulation experiments, then a new restoring force function with better detection results is established.展开更多
The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase...The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase trajectory in a small- scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system.展开更多
Identifying state transition and determining the critical value of the Duffing oscillator are crucial to indicating external signal existence and have a great influence on detection accuracy in weak signal detection. ...Identifying state transition and determining the critical value of the Duffing oscillator are crucial to indicating external signal existence and have a great influence on detection accuracy in weak signal detection. A circular zone counting (CZC) method is proposed in this paper, by combining the Duffing oscillator's phase trajectory feature and numerical calculation for quickly and accurately identifying state transition and determining the critical value, to realize a high- efficiency weak signal detection. Detailed model analysis and method construction of the CZC method are introduced. Numerical experiments into the reliability of the proposed CZC method compared with the maximum Lyapunov exponent (MLE) method are carried out. The CZC method is demonstrated to have better detecting ability than the MLE method, and furthermore it is simpler and clearer in calculation to extend to engineering application.展开更多
It is challenging to predict the frequency property of a nonlinear vibration system conveniently and efficiently.Especially,an invalid or physically irrelevant result might be obtained by some advanced methods.Therefo...It is challenging to predict the frequency property of a nonlinear vibration system conveniently and efficiently.Especially,an invalid or physically irrelevant result might be obtained by some advanced methods.Therefore,predicting the frequency lacks an expedient and efficient method.This challenge is addressed by developing a straightforward and effective frequency formulation that reliably predicts the frequency-amplitude relationship.This study provides a one-step approach which can fast determine the periodic properties of any conservative oscillators and also provides a reference for other similar studies.展开更多
The chaotic system is sensitive to the initial value, and this can be applied in the weak signal detection. There are periodic, critical and chaotic states in a chaotic system. When the system is in the critical stat...The chaotic system is sensitive to the initial value, and this can be applied in the weak signal detection. There are periodic, critical and chaotic states in a chaotic system. When the system is in the critical state, a small perturbation of system,n parameter may lead to a qualitative change of the system's state. This paper introduces a new method to detect weak signals by the way of disturbing the damping ratio. The authors choose the duffing equation, using MATLAB to carry on the simulation, to study the changes of the system when the signal to be measured is added to the damping ratio. By means of observing the phase loots chart and time damin chart, the weak signal will be detected.展开更多
Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-no...Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-noise ratios(SNRs).To overcome these problems,a blind parameter estimation method based on a Duffing oscillator array is proposed.A new relationship formula among the state of the Duffing oscillator,the pseudo-random sequence of the PRBC-LFM signal,and the frequency difference between the PRBC-LFM signal and the periodic driving force signal of the Duffing oscillator is derived,providing the theoretical basis for blind parameter estimation.Methods based on amplitude method,short-time Fourier transform method,and power spectrum entropy method are used to binarize the output of the Duffing oscillator array,and their performance is compared.The pseudo-random sequence is estimated using Duffing oscillator array synchronization,and the carrier frequency parameters are obtained by the relational expressions and characteristics of the difference frequency.Simulation results show that this blind estimation method overcomes limitations in prior knowledge and maintains good parameter estimation performance up to an SNR of-35 dB.展开更多
文摘配电网经消弧线圈接地,发生单相接地故障时,存在着故障特征弱、不明显的特点,很难准确找到故障线路,近年来随着通信等相关技术的发展,差动保护成本不断降低,使得配网差动保护的实现成为可能。提出变分模态分解(variational mode decomposition,VMD)和Duffing振子系统相结合的选线方法,VMD获取暂态零序电流的高频分量,将线路两侧高频零序电流相位差加入Duffing系统中,通过分析线路两侧高频分量相位差和Duffing系统状态的联系,构造了基于动态时间弯曲(dynamic time warping,DTW)描述系统状态变化的区内区外故障判据,实现故障准确定位,最后通过数值仿真证明该选线方法在不同过渡电阻、有分布式电源等情况下能够快速、准确定位线路上发生单相接地故障的区段,验证了该方法的有效性。所提故障区段定位算法可以有效提取故障特征,提高了保护的可靠性和选线的准确率。
基金Project supported by the National Natural Science Foundation of China(Grant No.61973037)。
文摘In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter estimation method for LFM signals with a Duffing oscillator based on frequency periodicity is proposed in this paper.This method utilizes the characteristic that the output signal of the Duffing oscillator excited by the LFM signal changes periodically with frequency,and the modulation period of the LFM signal is estimated by autocorrelation processing of the output signal of the Duffing oscillator.On this basis,the corresponding relationship between the reference frequency of the frequencyaligned Duffing oscillator and the frequency range of the LFM signal is analyzed by the periodic power spectrum method,and the frequency information of the LFM signal is determined.Simulation results show that this method can achieve high-accuracy parameter estimation for LFM signals at an SNR of-25 dB.
基金supported by the National Natural Science Foundation of China (Grant Nos 60577019 and 60777041) the International Cooperation Project of Shanxi Province,China
文摘This paper presents a novel approach to extract the periodic signals masked by a chaotic carrier. It verifies that the driven Duffing oscillator is immune to the chaotic carrier and sensitive to certain periodic signals. A preliminary detection scenario illustrates that the frequency and amplitude of the hidden sine wave signal can be extracted from the chaotic carrier by numerical simulation. The obtained results indicate that the hidden messages in chaotic secure communication can be eavesdropped utilizing Duffing oscillators.
文摘In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,when the performance index is complicated,because one may encounter a two-point boundary value problem of nonlinear differential algebraic equations.To be a numerical method,it is hard to exactly preserve all the specified conditions,which might deteriorate the accuracy of numerical solution.With this in mind,we develop a novel algorithm to find the solution of the optimal control problem of nonlinear Duffing oscillator,which can exactly satisfy all the required conditions for the minimality of the performance index.A new idea of shape functions method(SFM)is introduced,from which we can transform the optimal control problems to the initial value problems for the new variables,whose initial values are given arbitrarily,and meanwhile the terminal values are determined iteratively.Numerical examples confirm the high-performance of the iterative algorithms based on the SFM,which are convergence fast,and also provide very accurate solutions.The new algorithm is robust,even large noise is imposed on the input data.
文摘This paper discusses a novel technique and implementation to perform nonlinear control for two different forced model state oscillators and actuators. The paper starts by discussing the Duffing oscillator which features a second order non-linear differential equation describing complex motion whereas the second model is the Van der Pol oscillator with non-linear damping. A first order actuator is added to both models to expand on the chaotic behavior of the oscillators. In order to control the system without comprising linearization, Lyapunov non-linear control was used. A control Lyapunov function was tailored to the system. This led to improved maneuverability of the controller and the performance of the overall system. The controller was found to be highly efficient in system tracking and had swift response time. Simulations were performed on both the uncontrolled and controlled cases. Both simulation results ultimately confirmed the effectiveness of the proposed controller.
基金The project supported by National Natural Science Foundation of China
文摘The jump and bifurcation of Duffing oscillator with hardening spring subject to narrow-band random excitation are systematically and comprehensively examined. It is shown that, in a certain domain of the space of the oscillator and excitation parameters, there are two types of more probable motions in the stationary response of the Duffing oscillator and jumps may occur. The jump is a transition of the response from one more probable motion to another or vise versa. Outside the domain the stationary response is either nearly Gaussian or like a diffused limit cycle. As the parameters change across the boundary of the domain the qualitative behavior of the stationary response changes and it is a special kind of bifurcation. It is also shown that, for a set of specified parameters, the statistics are unique and they are independent of initial condition. It is pointed out that some previous results and interpretations on this problem are incorrect.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 40374045 and 40574051), and by the Jilin Technology Development Plan (Grant No 20050526),
文摘The stability of the periodic solution of the Duffing oscillator system in the periodic phase state is proved by using the Yoshizaw theorem, which establishes a theoretical basis for using this kind of chaotic oscillator system to detect weak signals. The restoring force term of the system affects the weak-signal detection ability of the system directly, the quantitative relationship between the coefficients of the linear and nonlinear items of the restoring force of the Duffing oscillator system and the SNR in the detection of weak signals is obtained through a large number of simulation experiments, then a new restoring force function with better detection results is established.
基金Project supported by the National Natural Science Foundation of China(Grant No.61673066)
文摘The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase trajectory in a small- scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61172047 and 61071025)
文摘Identifying state transition and determining the critical value of the Duffing oscillator are crucial to indicating external signal existence and have a great influence on detection accuracy in weak signal detection. A circular zone counting (CZC) method is proposed in this paper, by combining the Duffing oscillator's phase trajectory feature and numerical calculation for quickly and accurately identifying state transition and determining the critical value, to realize a high- efficiency weak signal detection. Detailed model analysis and method construction of the CZC method are introduced. Numerical experiments into the reliability of the proposed CZC method compared with the maximum Lyapunov exponent (MLE) method are carried out. The CZC method is demonstrated to have better detecting ability than the MLE method, and furthermore it is simpler and clearer in calculation to extend to engineering application.
基金Natural Science Foundation of Shaanxi Provincial Department of Education in 2022,China(No.22JK0437)。
文摘It is challenging to predict the frequency property of a nonlinear vibration system conveniently and efficiently.Especially,an invalid or physically irrelevant result might be obtained by some advanced methods.Therefore,predicting the frequency lacks an expedient and efficient method.This challenge is addressed by developing a straightforward and effective frequency formulation that reliably predicts the frequency-amplitude relationship.This study provides a one-step approach which can fast determine the periodic properties of any conservative oscillators and also provides a reference for other similar studies.
文摘The chaotic system is sensitive to the initial value, and this can be applied in the weak signal detection. There are periodic, critical and chaotic states in a chaotic system. When the system is in the critical state, a small perturbation of system,n parameter may lead to a qualitative change of the system's state. This paper introduces a new method to detect weak signals by the way of disturbing the damping ratio. The authors choose the duffing equation, using MATLAB to carry on the simulation, to study the changes of the system when the signal to be measured is added to the damping ratio. By means of observing the phase loots chart and time damin chart, the weak signal will be detected.
基金the National Natural Science Foundation of China(Grant Nos.61973037 and 61673066).
文摘Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-noise ratios(SNRs).To overcome these problems,a blind parameter estimation method based on a Duffing oscillator array is proposed.A new relationship formula among the state of the Duffing oscillator,the pseudo-random sequence of the PRBC-LFM signal,and the frequency difference between the PRBC-LFM signal and the periodic driving force signal of the Duffing oscillator is derived,providing the theoretical basis for blind parameter estimation.Methods based on amplitude method,short-time Fourier transform method,and power spectrum entropy method are used to binarize the output of the Duffing oscillator array,and their performance is compared.The pseudo-random sequence is estimated using Duffing oscillator array synchronization,and the carrier frequency parameters are obtained by the relational expressions and characteristics of the difference frequency.Simulation results show that this blind estimation method overcomes limitations in prior knowledge and maintains good parameter estimation performance up to an SNR of-35 dB.