In this paper,a stand-alone photovoltaic(PV)system based on a Double Ended Forward Converter(DEFC)is presented.The proposed converter is specified for 48 V,100Wapplications as most of the equipment used in telecommuni...In this paper,a stand-alone photovoltaic(PV)system based on a Double Ended Forward Converter(DEFC)is presented.The proposed converter is specified for 48 V,100Wapplications as most of the equipment used in telecommunication and aircraft fall in this range.The literature has limited potential application of DEFCin PV systems.The research work deals with an in-depth study of DEFCand proposes an improvedDEFCfor PV applications with battery backup.Besides,a bi-directional dc-dc converter for the battery is integrated to track theMaximumPower Point(MPP)of the PV generator.The converter is examined under variable irradiance and load conditions,and the analytical analysis of boundary conditions are implemented.The converter’s architecture also ensures built-in I-V curve tracing for the identification of MPP of PV generator.It offers low voltage stresses across switches and avoids sinking power supply and core resetting circuits.The topology’s behavior is analyzed based onMPP achievement and maintaining output under different conditions of battery backup availability,environmental,and load conditions.The PV system architecture is designed and analyzed theoretically and verified with simulations on the PSIM software.展开更多
The current-pulse load is generally characterized by wide frequency band and pulse variation,when it is directly connected to the power supply bus.The load power is presented as the instantaneous power.In order to bal...The current-pulse load is generally characterized by wide frequency band and pulse variation,when it is directly connected to the power supply bus.The load power is presented as the instantaneous power.In order to balance the instantaneous power difference between the pulse load and the DC bus,a bi-directional DC/DC converter is usually connected in parallel to compensate for the current fluctuation caused by the characteristics of the pulse load.However,there is a large current spike in the bus current in the pre-stage when the pulse load is changed between light and heavy load.In this paper,a three-state dual-inductance bi-directional converter is proposed.In addition,the load current waveform is directly used to control the inductive branch switches,and an adaptive current feedback control strategy based on the valley voltage loop is proposed to control the power switches.The control method is applicable to the arbitrary change of the frequency and power of the pulse load.Finally,the experimental results show that the threestate dual-inductance bi-directional converter not only eliminates excessive bus current spikes,but also improves the transient response of the three-port power supply system.展开更多
针对时钟外同步DCDC转换器不同,应用频率所需电感值不同对斜坡补偿斜率的影响,提出了一种基于伪PLL的自适应斜坡补偿电路。该电路能够根据DCDC转换器不同的外同步频率自动调节斜坡补偿斜率的大小,在保证转换器稳定工作的同时,不会影响...针对时钟外同步DCDC转换器不同,应用频率所需电感值不同对斜坡补偿斜率的影响,提出了一种基于伪PLL的自适应斜坡补偿电路。该电路能够根据DCDC转换器不同的外同步频率自动调节斜坡补偿斜率的大小,在保证转换器稳定工作的同时,不会影响转换器的带载能力和环路的反应速度。通过基于0.35μm的标准CMOS工艺,对不同的外同步频率下伪PLL电路产生自适应斜坡补偿斜率的过程进行了仿真验证,在250 k Hz^1.5 MHz的频率范围内,伪PLL均能产生自适应的斜坡补偿斜率,保证DCDC工作环路的稳定性。展开更多
Solar energy is a fast growing energy resource among the renewable energy resources in the market and potential for solar power is huge to contribute towards the power demand almost in all the countries. To capture th...Solar energy is a fast growing energy resource among the renewable energy resources in the market and potential for solar power is huge to contribute towards the power demand almost in all the countries. To capture the maximum power from the sun light in order to generate maximum power from the inverter, control system must be an equally efficient with the well designed power electronic circuits. Maximum power point tracking (MPPT) control system in general is taking care of extraction of maximum power from the sun light whereas current controller is mainly designed to optimize the inverter power to feed to power grid. In this paper, a novel MPPT algorithm using neuro fuzzy system is presented to ensure the maximum MPPT efficiency in order to ensure the maximum power across the inverter terminals. Simulation and experimental results for residential solar system with power electronic converters and analysis have been presented in this paper in order to prove the proposed algorithm.展开更多
文摘In this paper,a stand-alone photovoltaic(PV)system based on a Double Ended Forward Converter(DEFC)is presented.The proposed converter is specified for 48 V,100Wapplications as most of the equipment used in telecommunication and aircraft fall in this range.The literature has limited potential application of DEFCin PV systems.The research work deals with an in-depth study of DEFCand proposes an improvedDEFCfor PV applications with battery backup.Besides,a bi-directional dc-dc converter for the battery is integrated to track theMaximumPower Point(MPP)of the PV generator.The converter is examined under variable irradiance and load conditions,and the analytical analysis of boundary conditions are implemented.The converter’s architecture also ensures built-in I-V curve tracing for the identification of MPP of PV generator.It offers low voltage stresses across switches and avoids sinking power supply and core resetting circuits.The topology’s behavior is analyzed based onMPP achievement and maintaining output under different conditions of battery backup availability,environmental,and load conditions.The PV system architecture is designed and analyzed theoretically and verified with simulations on the PSIM software.
基金This work was supported by the National Natural Science Foundation of China under Grant 61601378the Sichuan Science and Technology Program under Grant 2019YJ0237Foundation of Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle,Ministry of Education.
文摘The current-pulse load is generally characterized by wide frequency band and pulse variation,when it is directly connected to the power supply bus.The load power is presented as the instantaneous power.In order to balance the instantaneous power difference between the pulse load and the DC bus,a bi-directional DC/DC converter is usually connected in parallel to compensate for the current fluctuation caused by the characteristics of the pulse load.However,there is a large current spike in the bus current in the pre-stage when the pulse load is changed between light and heavy load.In this paper,a three-state dual-inductance bi-directional converter is proposed.In addition,the load current waveform is directly used to control the inductive branch switches,and an adaptive current feedback control strategy based on the valley voltage loop is proposed to control the power switches.The control method is applicable to the arbitrary change of the frequency and power of the pulse load.Finally,the experimental results show that the threestate dual-inductance bi-directional converter not only eliminates excessive bus current spikes,but also improves the transient response of the three-port power supply system.
文摘针对时钟外同步DCDC转换器不同,应用频率所需电感值不同对斜坡补偿斜率的影响,提出了一种基于伪PLL的自适应斜坡补偿电路。该电路能够根据DCDC转换器不同的外同步频率自动调节斜坡补偿斜率的大小,在保证转换器稳定工作的同时,不会影响转换器的带载能力和环路的反应速度。通过基于0.35μm的标准CMOS工艺,对不同的外同步频率下伪PLL电路产生自适应斜坡补偿斜率的过程进行了仿真验证,在250 k Hz^1.5 MHz的频率范围内,伪PLL均能产生自适应的斜坡补偿斜率,保证DCDC工作环路的稳定性。
文摘Solar energy is a fast growing energy resource among the renewable energy resources in the market and potential for solar power is huge to contribute towards the power demand almost in all the countries. To capture the maximum power from the sun light in order to generate maximum power from the inverter, control system must be an equally efficient with the well designed power electronic circuits. Maximum power point tracking (MPPT) control system in general is taking care of extraction of maximum power from the sun light whereas current controller is mainly designed to optimize the inverter power to feed to power grid. In this paper, a novel MPPT algorithm using neuro fuzzy system is presented to ensure the maximum MPPT efficiency in order to ensure the maximum power across the inverter terminals. Simulation and experimental results for residential solar system with power electronic converters and analysis have been presented in this paper in order to prove the proposed algorithm.