Seismic response of ground supported baseisolated liquid storage tanks are evaluated under bi-directional earthquakes. The base-isolated liquid storage tanks are modeled using mechanical analogs with two and three lum...Seismic response of ground supported baseisolated liquid storage tanks are evaluated under bi-directional earthquakes. The base-isolated liquid storage tanks are modeled using mechanical analogs with two and three lumped masses (Model 1 and Model 2). Two types of isolation systems, such as sliding system and elastomeric system, are considered for the present study. The isolation systems are modeled using Wen’s equation for hysteretic isolation systems. Response of base-isolated liquid storage tanks, evaluated through two different modeling approaches, is compared. Both the models predict similar sloshing displacement. The effect of interaction between the mutually perpendicular seismic responses of the isolator is investigated for both the models. It is observed that interaction affects the peak seismic response of the base-isolated liquid storage tanks significantly, under the bi-directional earthquake components.展开更多
The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake moni...The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake monitoring in China.The newly built dense strong motion stations in this area provide unprecedented conditions for high-precision earthquake relocation,especially the earthquake focal depth.This paper uses the newly built strong motion and traditional broadband seismic networks to relocate the source locations of the M3.0 and above aftershocks and to invert their focal mechanisms.The horizontal error of earthquake location is estimated to be 0.5−1 km,and the vertical error is 1−2 km.The focal depth range of aftershocks is 9.6−14.6 km,distributed in a 12-km-long strip with SSE direction.Aftershocks in the south are more concentrated horizontally and vertically,while aftershocks in the north are more scattered.The focal mechanisms of the main shock and aftershocks are relatively consistent,and the P-axis orientation is consistent with the regional strain direction.There is a seismic blank area of M3.0 and above,about 3−5 km between the main shock and aftershocks.It is suggested that the energy released by the main shock rupture is concentrated in this area.Based on the earthquake location and focal mechanism of the main shock,it is inferred that the Northern Lajishan fault zone is the seismogenic structure of the main shock,and the main shock did not occur on the main fault,but on a secondary fault.The initial rupture depth and centroid depth of the main shock were 12.8 and 14.0 km,respectively.The source rupture depth may not be the main reason for the severe earthquake disaster.展开更多
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw...In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.展开更多
The National Strong Motion Observation Network System (NSMONS) of China is briefly introduced in this paper. The NSMONS consists of permanent free-field stations, special observation arrays, mobile observatories and...The National Strong Motion Observation Network System (NSMONS) of China is briefly introduced in this paper. The NSMONS consists of permanent free-field stations, special observation arrays, mobile observatories and a network management system. During the Wenchuan Earthquake, over 1,400 components of acceleration records were obtained from 460 permanent free-field stations and three arrays for topographical effect and structural response observation in the network system from the main shock, and over 20,000 components of acceleration records from strong aftershocks occurred before August 1, 2008 were also obtained by permanent free-field stations of the NSMONS and 59 mobile instruments quickly deployed after the main shock. The strong motion recordings from the main shock and strong aftershocks are summarized in this paper. In the ground motion recordings, there are over 560 components with peak ground acceleration (PGA) over 10 Gal, the largest being 957.7 Gal. The largest PGA recorded during the aftershock exceeds 300 Gal.展开更多
During the great Wenchuan earthquake, about 460 permanent free-field stations in National Strong Motion Observation Network System (NSMONS) of China captured the main shock acceleration records. These records can be...During the great Wenchuan earthquake, about 460 permanent free-field stations in National Strong Motion Observation Network System (NSMONS) of China captured the main shock acceleration records. These records can be applied to site effect analyses, and then the site classification of those permanent stations can be carried out firstly, which will served as the fundamental information for further research. In this paper, the site of near-fault stations is classified by horizontal-to-vertical spectral ratio (HVSR) method according to the site class description of Japan earthquake resistant design code and response spectral shapes (RSS) method following the site class description of the 1997 Uniform Building Code (UBC) provisions. Then based on the detailed borehole data of those free-field stations, the equivalent shear wave velocity and overburden thickness are calculated and the site classifications are given by Chinese code for seismic design of buildings. Furthermore, for the stations having successful microtremor test data, the site dominant periods are computed to verify the results of site classification. Finally, combined with all the above results, the recommended site classes of near-fault permanent free-field stations are given.展开更多
A linear response history analysis method is used to determine the influence of three factors:geometric incoherency,wave-passage,and local site characteristics on the response of lnulti-support structures subjected to...A linear response history analysis method is used to determine the influence of three factors:geometric incoherency,wave-passage,and local site characteristics on the response of lnulti-support structures subjected to differential ground motions.A one-span frame and a reduced model of a 24-span bridge,located in Las Vegas,Nevada are studied,in which the influence of each of the three factors and their combinations are analyzed.It is revealed that the incoherency of earthquake ground motion can have a dramatic influence on structural response by modifying the dynamics response to uniform excitation and inducing pseudo-static response,which does not exist in structures subjected to uniform excitation.The total response when all three sources of ground motion incoherency are included is generally larger than that of uniform excitation.展开更多
The great Ms8.0 Wenchuan earthquake has been the most destructive earthquake since 1949 in China. The earthquake occurred no more than half a year after the establishment of the National Strong Motion Observation Netw...The great Ms8.0 Wenchuan earthquake has been the most destructive earthquake since 1949 in China. The earthquake occurred no more than half a year after the establishment of the National Strong Motion Observation Network System (NSMONS) of China; what is more, the epicenter was located in the area with dense strong motion observation sta- tions so that a large number of strong motion records of the main shock were obtained. In this paper, 501 strong motion re- cords from 167 observation stations are utilized to establish the ground motion attenuation relations in three directions in the range of fault distance less than 600 km. The result shows the difference of seismic motion attenuation in two horizontal di- rections is insignificant. It is the first time that strong-motion records are used to establish the ground motion attenuation relations of the Ms8.0 earthquake in China.展开更多
Near-field strong ground motions are useful for engineering seismology studies and seismic design, but dense observation networks of damaging earthquakes are still rare. In this study, based on the strong-motion data ...Near-field strong ground motions are useful for engineering seismology studies and seismic design, but dense observation networks of damaging earthquakes are still rare. In this study, based on the strong-motion data from the M w 6.6 Lushan earthquake, the ground motion parameters in different spatial regions are systematically analyzed, and the contributions from different effects, like the hanging-wall effect, directivity effect, and attenuation effect are separated to the extent possible. Different engineering parameters from the observed ground motions are compared with the local design response spectra and a new attenuation relation of Western China. General results indicate that the high frequency ground motion, like the peak ground acceleration, on two sides of the fault plane is sensitive to the hanging-wall effect, whereas the low frequency ground motion, like the long period spectral acceleration, in the rupture propagation direction is affected by the directivity effect. Moreover, although the M w 6.6 Lushan earthquake is not a large magnitude event, the spatial difference of ground motion is still obvious; thus, for a thrust faulting earthquake, in addition to the hanging effect, the directivity effect should also be considered.展开更多
The Wenchuan earthquake has altered the crustal motion characteristics in the eastern margin of the Tibetan Plateau and adjacent regions.Using discontinuous GPS survey data for 2008–2012, the velocity field for the E...The Wenchuan earthquake has altered the crustal motion characteristics in the eastern margin of the Tibetan Plateau and adjacent regions.Using discontinuous GPS survey data for 2008–2012, the velocity field for the Eurasia reference framework has been obtained, and the general trend of contemporary crustal motion after the occurrence of the Wenchuan earthquake has been studied.In addition, using the velocity field, the block movement velocity has been estimated by least-squares fitting.Furthermore, the properties and displacement rates of main faults have been obtained from the differences in velocity vectors of the blocks on both sides of the faults.The results reveal that there are no obvious changes in the general characteristics of crustal motion in this area after the Wenchuan earthquake.The earthquake mainly changed the rate of the movement of the Chuan-Qing block and caused variation in the movement direction of the South China block.The effect of the earthquake on faults is mainly reflected in variations in fault displacement velocity; there is no fundamental change in the properties of fault activity.The displacement rates of the Xianshuihe fault decreased by 3–4 mm/a, the Longmenshan fault increased by 9–10 mm/a, and the northern segment of the Anninghe fault increased by approximately 9 mm/a.Furthermore, the displacement rates of the Minjiang, Xueshan, Huya, Longquanshan, and Xinjin faults increased by 2–3 mm/a.This implies that the effects of the Wenchuan earthquake on crustal movement can mainly be observed in the Chuan-Qing, South China, and N-Chuan-Dian blocks and their internal faults, as well as the Xianshuihe and Longmenshan faults and the northern section of the Anninghe fault.The reason for this is that the Wenchuan earthquake disturbed the kinematic and dynamic balance in the region.展开更多
This paper proposes that on the basis of near-source saturation characteristic of ground motion, the peak ground motion acceleration and the acceleration response spectra of diffuse earthquakes affecting the nuclear f...This paper proposes that on the basis of near-source saturation characteristic of ground motion, the peak ground motion acceleration and the acceleration response spectra of diffuse earthquakes affecting the nuclear facility site can be determined by the statistic method. In view of the problem of insufficient statistic samples due to fewer qualified strong earth- quake records on the bedrock site, it also proposes that according to the features of ground motion response of the soil, the acceleration records on the soil site can be transformed into the equivalent acceleration records on rock site for a simultane- ous statistic analysis together with the records on rock site. Consequently, we have obtained by this method the near-source peak acceleration and the acceleration response spectra of small and moderate earthquakes on the site that could meet the need of nuclear facility and made a comparative analysis to the results from relevant researches. This new method for deter- mining diffuse earthquakes is only preliminarily verified in the paper and further research is needed for practical application.展开更多
The county town of Beichuan county, China, experienced catastrophic destruction due to landslides induce by the 2008 Wenchuan earthquake. In consideration of the special location of the county town, this paper selecte...The county town of Beichuan county, China, experienced catastrophic destruction due to landslides induce by the 2008 Wenchuan earthquake. In consideration of the special location of the county town, this paper selected the landslides induced in the town as representative of large-scale near-rupture landslides, and quantitatively analyzed why the landslide damage was so destructive in the town by using strong motion data obtained from the Wenchuan earthquake in the Longmenshan area. Three methods were employed to estimate the landslide damage using strong motion data. (1) Peak ground accelerations (PGAs) on the hanging wall were used to evaluate the PGAs on the landslide sites in the town. The evaluated average PGAs were all greater than I g, indicating that the ground motion intensity was very strong during the earthquake. (2) Acceleration time histories, from another station with similar geological conditions to the town, were used to evaluate the critical acceleration changing range, and the estimated values showed the geological conditions were very susceptible to earthquakes. (3) Acceleration time histories, from two stations on the hanging and foot walls of the rupture, and near the town, were used to calculate the Newmark displacements, and all the evaluated displacements indicated that landslides were very likely. The results show that the slopes, susceptible to earthquakes in the Beichuan county town, were easily triggered under such strong ground-motion intensity and developed into large-scale catastrophic events.展开更多
In the analysis and design of important structures with relatively long life spans, there is a need to generate strong motion data for possible large events. The source of an earthquake is characterized by the spatial...In the analysis and design of important structures with relatively long life spans, there is a need to generate strong motion data for possible large events. The source of an earthquake is characterized by the spatial distribution of slip on the fault plane. For future events, this is unknown. In this paper, a stochastic earthquake source model is developed to address this issue. Here, 1D and 2D stochastic models for slip distribution developed by Lavallée et al.(2006) are used. The random field associated with the slip distribution is heavy-tailed stable distribution which can be used for large events. Using 236 past rupture models, the spectral scaling parameter and the four stable or Levy's parameters against empirical relationship for known quantities like magnitude or fault length are developed. The model is validated with data from 411 stations of 1999 Chi-Chi earthquake. The simulated response spectrum showed good agreement to actual data. Further the proposed model is used to generate ground motion for the 1993 Killari Earthquake where strong motion data is not available. The simulated mean peak ground velocity was in turn related to the intensity(MSK) and compared against values in the literature.展开更多
Serial destructive earthquakes have caused heavy casualties and economic losses to the city in southwestern of China. The Ludian Ms 6.5 earthquake and the Jinggu Ms 6.6 earthquake occurred in Yunnan province in 2014. ...Serial destructive earthquakes have caused heavy casualties and economic losses to the city in southwestern of China. The Ludian Ms 6.5 earthquake and the Jinggu Ms 6.6 earthquake occurred in Yunnan province in 2014. There is a question of why the two events with almost the same level of magnitude caused differences in earthquake damage. To understand the uniqueness of the phenomenon, this paper focuses on the characteristics of the ground motions and post-earthquake field investigation for the two events. Firstly, we present an overview of the residuals between the Ludian earthquake and the Jinggu earthquake based on the YW06 Ground Motion Prediction Equation (GMPE), and explain the unusual destructiveness of the strong ground motion. Then we analyze the ground motion recordings at selected typical station, based on the strong motion parameters: equivalent predominant frequency and Arias intensity. The result exhibits a good agreement with the Chinese seismic intensity scale. This study would be helpful to gain a better knowledge of the characteristics and variability of ground motions for Ms6 class earthquakes in China and to understand the implications to future earthquakes with similar focal mechanism and local condition.展开更多
This paper aimed to examine the site dependence and evaluate the methods for site analysis of far-source ground motions. This was achieved through the examination of frequency content estimated by different methods ba...This paper aimed to examine the site dependence and evaluate the methods for site analysis of far-source ground motions. This was achieved through the examination of frequency content estimated by different methods based on strong ground motions recorded at twelve far-source stations in Shandong province during the Wenchuan earthquake. The stations were located in sites with soil profiles ranging from code classes Ⅰ to Ⅲ. Approaches used included the Fourier amplitude spectrum (FAS), the earthquake response spectrum (ERS), the spectral ratio between the horizontal and the vertical components (H/V), the spectral ratio between the spectra at the site and at a reference site (SRRS), and coda wave analysis (CWA). Results showed that major periods of these ground motions obtained by FAS, ERS and H/V ratio methods were all evidently larger than site dominant periods; the periods were also different from each other and mainly reflected the frequency content of long period components. Prominent periods obtained by the SRRS approach neither illuminated the long period aspect nor efficiently determined site features of the motions. The CWA resulted in a period close to site period for stations with good quality recordings. The results obtained in this study will be useful for the evaluation of far-source effect in constructing seismic design spectra and in selecting methods for ground motion site analysis.展开更多
A fragility calculation scheme is estabtished in this paper for porcelain-type equipments subjected to random earthquake ground motions. All steps of the method are illustrated by the seismic damage analysis of GW4-11...A fragility calculation scheme is estabtished in this paper for porcelain-type equipments subjected to random earthquake ground motions. All steps of the method are illustrated by the seismic damage analysis of GW4-110 disconnect switch. The model of the equipment is built applying the finite element method with flexible joints, and the seismic response of the equipment is analyzed using elastic time history method. On the base, according to the strength damage index and Monte-Carlo Method, the seismic damage ratios are counted and the seismic fragility curves are presented. Then the seismic damage of GW4-110 disconnect switch can be predicted.展开更多
The stochastic finite-fault simulation method was applied to synthesize the horizontal ground acceleration seismograms produced by the MW6.1 Ludian earthquake on August 3,2014.For this purpose,we produced first a tota...The stochastic finite-fault simulation method was applied to synthesize the horizontal ground acceleration seismograms produced by the MW6.1 Ludian earthquake on August 3,2014.For this purpose,we produced first a total of 200 kinematic source models for the Ludian event,which are characterized by the heterogeneous slip on the conjugated ruptured fault and the slip-dependent spreading of the rupture front.The results indicated that the heterogeneous slip and the spatial extent of the ruptured fault play dominant roles in the spatial distribution of ground motions in the near-fault area.The peak ground accelerations(PGAs)and 5%-damped pseudospectral accelerations(PSAs)at periods shorter than 0.5 s estimated on the resulting synthetics generally match well with the observations at stations with Joyner-Boore distances(RJB)greater than 20 km.The synthetic PGVs and PSAs at periods of 0.5 s and 0.75 s are in good agreement with predicted medians by the Yu14 model(Yu et al.,2014).However,the synthetic results are generally much lower than the predicted medians by BSSA14 model(Boore et al.,2014).Moreover,the ground motion variability caused by the randomness in the source rupture process was evaluated by these synthetics.The standard deviations of PSAs on the base-10 logarithmic scale,Sigma[log10(PSA)],are closely dependent on either the spectral period or the RJB.The Sigma[log10(PSA)]remains a constant approximately 0.55 at periods shorter than 0.1 s,and then increase continuously up to^0.13 as the period increases from 0.1 to 2.0 s.The Sigma[log10(PSA)]values at periods of 0.1‒2.0 s show the downward tendency as the RJB values increase.However,the Sigma[log10(PSA)]values at periods shorter than 0.1 s decrease as the RJB values increase up to^50 km,and then increase with the increasing RJB.Furthermore,we found that the ground-motion variability shows the significant dependence on the azimuth.展开更多
We focus here on the rupture directivity effect on the spatial distribution and attenuation characteristics of near-field ground motions during the 2008 MW7.9 Wenchuan earthquake.We examine the difference between the ...We focus here on the rupture directivity effect on the spatial distribution and attenuation characteristics of near-field ground motions during the 2008 MW7.9 Wenchuan earthquake.We examine the difference between the observed ground motions in and opposite the rupture directions and compare them with Next Generation Attenuation-West2(NGA-West2)ground motion prediction models.The isochrone directivity predictor is used to quantify the band-limited nature of the rupture directivity effect on strong ground motion.Our results show that the observed peak ground velocity(PGV)and spectral accelerations of periods of 1.0 s and longer are significantly amplified in the rupture direction,but de-amplified in the opposite direction affected by rupture directivity effect of this event.In contrast,the effect of rupture directivity on the observed peak ground acceleration(PGA)and periods of shorter than 1.0 s are relatively weak.The rupture directivity of this event shows clear period dependent and band limited characteristics with the strongest effect occurring around the period of 7.5 s.展开更多
In this study,we analyzed 100 three-component strong ground motion records observed within 200 km of the causative fault of the 6 February 2023 M_(W)7.8 Pazarcık(Kahramanmaraş)Earthquake in SE Türkiye.The wavelet...In this study,we analyzed 100 three-component strong ground motion records observed within 200 km of the causative fault of the 6 February 2023 M_(W)7.8 Pazarcık(Kahramanmaraş)Earthquake in SE Türkiye.The wavelet method was utilized to identify and analyze the characteristics of pulse-like ground motions in the near-fault region,while considering the uncertainty of the pulse orientation during the analysis.Our investigation focused on the effects of the focal mechanism and rupture process on the spatial distribution,pulse orientation,and maximum pulse direction of the observed pulse-like ground motion.We also analyzed the amplitude and period of the observed ground pulses and the effect of long-period amplification on the ground motion response spectra.Our results indicated the following:(1)A total of 21 typical ground velocity pulses were observed during this earthquake,exhibiting complex characteristics due to the influence of the strike-slip mechanism and rupture directivity.Most ground pulses(17 out of 21)were recorded within 20 km of the fault,in a wide range of orientations,including normal and parallel to the fault direction.The waveforms exhibited unidirectional features,indicating the effects of left-lateral fault slip.Distinct pulses observed more than 20 km from the fault were mainly oriented normal to the fault.The waveforms were bidirectional with double-or multi-round trips as a result of rupture directivity.(2)The amplitudes of the observed pulses ranged from 30.5 to 220.0 cm/s,with the largest peak velocity of 220.0 cm/s observed at Station 3138.The pulse periods ranged from 2.3 to 14.5 s,with the longest pulse period of 14.5 s observed at Station 3116.The amplitude and period of the pulses observed during this earthquake were comparable to those of similar-magnitude global earthquakes.The amplitude of the pulses decreased significantly with increasing fault distance,whereas the pulse period was not significantly affected by the fault distance.(3)Compared with non-pulse records,the velocity pulse records had a pronounced amplification effect on the acceleration response spectra near the pulse period,with factors ranging from 2.1 to 5.8.The larger velocity pulses also significantly amplified the velocity response spectra,particularly over the long periods.This significant amplification effect of the pulses on the response spectra leads to empirical models underestimating the long-period earthquake ground motion.展开更多
Based on the data of first motion of 11 earthquake sequences with ML ≥ 3.0 recorded by the Telemetric Seismic Network of Shanxi since the 1980s, the first motion characteristics of each earthquake sequence were studi...Based on the data of first motion of 11 earthquake sequences with ML ≥ 3.0 recorded by the Telemetric Seismic Network of Shanxi since the 1980s, the first motion characteristics of each earthquake sequence were studied. It is known that earthquake sequences of different types have different consistency characteristics of focal mechanism. The decrease and increase of the first motion contradictory sign ratios could be taken as an index to judge whether there would still be a larger earthquake to come after the earthquake sequence.展开更多
Representing earthquake ground: motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman f...Representing earthquake ground: motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman filter is applied to estimate the time varying coefficients. The comparison between the estimation results of unscented Kalman filter and Kalman filter methods shows that unscented Kalman filter can more precisely represent the distribution of the spectral peaks in time-frequency plane than Kalman filter, and its time and frequency resolution is finer which ensures its better ability to track the local properties of earthquake ground motions and to identify the systems with nonlinearity or abruptness. Moreover, the estimation results of ARMA models with different orders indicate that the theoretical frequency resolving power of ARMA model which was usually ignored in former studies has great effect on the estimation precision of instantaneous spectrum and it should be taken as one of the key factors in order selection of ARMA model.展开更多
文摘Seismic response of ground supported baseisolated liquid storage tanks are evaluated under bi-directional earthquakes. The base-isolated liquid storage tanks are modeled using mechanical analogs with two and three lumped masses (Model 1 and Model 2). Two types of isolation systems, such as sliding system and elastomeric system, are considered for the present study. The isolation systems are modeled using Wen’s equation for hysteretic isolation systems. Response of base-isolated liquid storage tanks, evaluated through two different modeling approaches, is compared. Both the models predict similar sloshing displacement. The effect of interaction between the mutually perpendicular seismic responses of the isolator is investigated for both the models. It is observed that interaction affects the peak seismic response of the base-isolated liquid storage tanks significantly, under the bi-directional earthquake components.
文摘The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake monitoring in China.The newly built dense strong motion stations in this area provide unprecedented conditions for high-precision earthquake relocation,especially the earthquake focal depth.This paper uses the newly built strong motion and traditional broadband seismic networks to relocate the source locations of the M3.0 and above aftershocks and to invert their focal mechanisms.The horizontal error of earthquake location is estimated to be 0.5−1 km,and the vertical error is 1−2 km.The focal depth range of aftershocks is 9.6−14.6 km,distributed in a 12-km-long strip with SSE direction.Aftershocks in the south are more concentrated horizontally and vertically,while aftershocks in the north are more scattered.The focal mechanisms of the main shock and aftershocks are relatively consistent,and the P-axis orientation is consistent with the regional strain direction.There is a seismic blank area of M3.0 and above,about 3−5 km between the main shock and aftershocks.It is suggested that the energy released by the main shock rupture is concentrated in this area.Based on the earthquake location and focal mechanism of the main shock,it is inferred that the Northern Lajishan fault zone is the seismogenic structure of the main shock,and the main shock did not occur on the main fault,but on a secondary fault.The initial rupture depth and centroid depth of the main shock were 12.8 and 14.0 km,respectively.The source rupture depth may not be the main reason for the severe earthquake disaster.
基金funded by the China National Key Research and Development Program(No.2022YFC3003505)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB23Y01)+1 种基金the National Natural Science Foundation of China(No.52278540)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB22B28).
文摘In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.
基金NSFC Under Grant No. 90715038MOST of China Under Grant No. 2006BAC13B02
文摘The National Strong Motion Observation Network System (NSMONS) of China is briefly introduced in this paper. The NSMONS consists of permanent free-field stations, special observation arrays, mobile observatories and a network management system. During the Wenchuan Earthquake, over 1,400 components of acceleration records were obtained from 460 permanent free-field stations and three arrays for topographical effect and structural response observation in the network system from the main shock, and over 20,000 components of acceleration records from strong aftershocks occurred before August 1, 2008 were also obtained by permanent free-field stations of the NSMONS and 59 mobile instruments quickly deployed after the main shock. The strong motion recordings from the main shock and strong aftershocks are summarized in this paper. In the ground motion recordings, there are over 560 components with peak ground acceleration (PGA) over 10 Gal, the largest being 957.7 Gal. The largest PGA recorded during the aftershock exceeds 300 Gal.
基金supported by the projects from the Ministry of Science and Technology of China (No.2009BK55B00)China Earthquake Administration (CEA) (No. 200808026)Institute of Engineering Mechanics of CEA (No. 0618001)
文摘During the great Wenchuan earthquake, about 460 permanent free-field stations in National Strong Motion Observation Network System (NSMONS) of China captured the main shock acceleration records. These records can be applied to site effect analyses, and then the site classification of those permanent stations can be carried out firstly, which will served as the fundamental information for further research. In this paper, the site of near-fault stations is classified by horizontal-to-vertical spectral ratio (HVSR) method according to the site class description of Japan earthquake resistant design code and response spectral shapes (RSS) method following the site class description of the 1997 Uniform Building Code (UBC) provisions. Then based on the detailed borehole data of those free-field stations, the equivalent shear wave velocity and overburden thickness are calculated and the site classifications are given by Chinese code for seismic design of buildings. Furthermore, for the stations having successful microtremor test data, the site dominant periods are computed to verify the results of site classification. Finally, combined with all the above results, the recommended site classes of near-fault permanent free-field stations are given.
基金the China Scholarship Council and the Teaching and Research Award Program for Outstanding Young Teachers (TRAPOYT) in Higher Education Institutions of MOE,PRC.
文摘A linear response history analysis method is used to determine the influence of three factors:geometric incoherency,wave-passage,and local site characteristics on the response of lnulti-support structures subjected to differential ground motions.A one-span frame and a reduced model of a 24-span bridge,located in Las Vegas,Nevada are studied,in which the influence of each of the three factors and their combinations are analyzed.It is revealed that the incoherency of earthquake ground motion can have a dramatic influence on structural response by modifying the dynamics response to uniform excitation and inducing pseudo-static response,which does not exist in structures subjected to uniform excitation.The total response when all three sources of ground motion incoherency are included is generally larger than that of uniform excitation.
基金supported by Earthquake Research Foundation of China Earthquake Administration (No. C08043)Social Development Plan Foundation of Yunnan Province (2007CA002)
文摘The great Ms8.0 Wenchuan earthquake has been the most destructive earthquake since 1949 in China. The earthquake occurred no more than half a year after the establishment of the National Strong Motion Observation Network System (NSMONS) of China; what is more, the epicenter was located in the area with dense strong motion observation sta- tions so that a large number of strong motion records of the main shock were obtained. In this paper, 501 strong motion re- cords from 167 observation stations are utilized to establish the ground motion attenuation relations in three directions in the range of fault distance less than 600 km. The result shows the difference of seismic motion attenuation in two horizontal di- rections is insignificant. It is the first time that strong-motion records are used to establish the ground motion attenuation relations of the Ms8.0 earthquake in China.
基金The Basic Science Research Foundation of Institute of Engineering Mechanics,CEA under Grant No.2011B02as part of the National Natural Science Foundation of China under Grant Nos.51238012,91215301,973+1 种基金Program under Grant No.2011CB013601International Science&Technology Cooperation Program of China under Grant No.2012DFA70810
文摘Near-field strong ground motions are useful for engineering seismology studies and seismic design, but dense observation networks of damaging earthquakes are still rare. In this study, based on the strong-motion data from the M w 6.6 Lushan earthquake, the ground motion parameters in different spatial regions are systematically analyzed, and the contributions from different effects, like the hanging-wall effect, directivity effect, and attenuation effect are separated to the extent possible. Different engineering parameters from the observed ground motions are compared with the local design response spectra and a new attenuation relation of Western China. General results indicate that the high frequency ground motion, like the peak ground acceleration, on two sides of the fault plane is sensitive to the hanging-wall effect, whereas the low frequency ground motion, like the long period spectral acceleration, in the rupture propagation direction is affected by the directivity effect. Moreover, although the M w 6.6 Lushan earthquake is not a large magnitude event, the spatial difference of ground motion is still obvious; thus, for a thrust faulting earthquake, in addition to the hanging effect, the directivity effect should also be considered.
基金supported by a geological survey project of the China Geological Survey (No.1212011140013, No.12120113009800)
文摘The Wenchuan earthquake has altered the crustal motion characteristics in the eastern margin of the Tibetan Plateau and adjacent regions.Using discontinuous GPS survey data for 2008–2012, the velocity field for the Eurasia reference framework has been obtained, and the general trend of contemporary crustal motion after the occurrence of the Wenchuan earthquake has been studied.In addition, using the velocity field, the block movement velocity has been estimated by least-squares fitting.Furthermore, the properties and displacement rates of main faults have been obtained from the differences in velocity vectors of the blocks on both sides of the faults.The results reveal that there are no obvious changes in the general characteristics of crustal motion in this area after the Wenchuan earthquake.The earthquake mainly changed the rate of the movement of the Chuan-Qing block and caused variation in the movement direction of the South China block.The effect of the earthquake on faults is mainly reflected in variations in fault displacement velocity; there is no fundamental change in the properties of fault activity.The displacement rates of the Xianshuihe fault decreased by 3–4 mm/a, the Longmenshan fault increased by 9–10 mm/a, and the northern segment of the Anninghe fault increased by approximately 9 mm/a.Furthermore, the displacement rates of the Minjiang, Xueshan, Huya, Longquanshan, and Xinjin faults increased by 2–3 mm/a.This implies that the effects of the Wenchuan earthquake on crustal movement can mainly be observed in the Chuan-Qing, South China, and N-Chuan-Dian blocks and their internal faults, as well as the Xianshuihe and Longmenshan faults and the northern section of the Anninghe fault.The reason for this is that the Wenchuan earthquake disturbed the kinematic and dynamic balance in the region.
基金supported by the Special Funds for Sciences and Technology Research (No. 200708003 and No. 200808008)National Natural Science Foundation of China (No. 90715020)
文摘This paper proposes that on the basis of near-source saturation characteristic of ground motion, the peak ground motion acceleration and the acceleration response spectra of diffuse earthquakes affecting the nuclear facility site can be determined by the statistic method. In view of the problem of insufficient statistic samples due to fewer qualified strong earth- quake records on the bedrock site, it also proposes that according to the features of ground motion response of the soil, the acceleration records on the soil site can be transformed into the equivalent acceleration records on rock site for a simultane- ous statistic analysis together with the records on rock site. Consequently, we have obtained by this method the near-source peak acceleration and the acceleration response spectra of small and moderate earthquakes on the site that could meet the need of nuclear facility and made a comparative analysis to the results from relevant researches. This new method for deter- mining diffuse earthquakes is only preliminarily verified in the paper and further research is needed for practical application.
基金supported by the National Science and Technology Supporting Item of China (No. 2012BAK15B06)the project from Institute of Crustal Dynamics, China Earthquake Administration (No. ZDJ2010-28)
文摘The county town of Beichuan county, China, experienced catastrophic destruction due to landslides induce by the 2008 Wenchuan earthquake. In consideration of the special location of the county town, this paper selected the landslides induced in the town as representative of large-scale near-rupture landslides, and quantitatively analyzed why the landslide damage was so destructive in the town by using strong motion data obtained from the Wenchuan earthquake in the Longmenshan area. Three methods were employed to estimate the landslide damage using strong motion data. (1) Peak ground accelerations (PGAs) on the hanging wall were used to evaluate the PGAs on the landslide sites in the town. The evaluated average PGAs were all greater than I g, indicating that the ground motion intensity was very strong during the earthquake. (2) Acceleration time histories, from another station with similar geological conditions to the town, were used to evaluate the critical acceleration changing range, and the estimated values showed the geological conditions were very susceptible to earthquakes. (3) Acceleration time histories, from two stations on the hanging and foot walls of the rupture, and near the town, were used to calculate the Newmark displacements, and all the evaluated displacements indicated that landslides were very likely. The results show that the slopes, susceptible to earthquakes in the Beichuan county town, were easily triggered under such strong ground-motion intensity and developed into large-scale catastrophic events.
文摘In the analysis and design of important structures with relatively long life spans, there is a need to generate strong motion data for possible large events. The source of an earthquake is characterized by the spatial distribution of slip on the fault plane. For future events, this is unknown. In this paper, a stochastic earthquake source model is developed to address this issue. Here, 1D and 2D stochastic models for slip distribution developed by Lavallée et al.(2006) are used. The random field associated with the slip distribution is heavy-tailed stable distribution which can be used for large events. Using 236 past rupture models, the spectral scaling parameter and the four stable or Levy's parameters against empirical relationship for known quantities like magnitude or fault length are developed. The model is validated with data from 411 stations of 1999 Chi-Chi earthquake. The simulated response spectrum showed good agreement to actual data. Further the proposed model is used to generate ground motion for the 1993 Killari Earthquake where strong motion data is not available. The simulated mean peak ground velocity was in turn related to the intensity(MSK) and compared against values in the literature.
基金supported by the National Key R&D Program of China No. 2017YFC1500801the National Natural Science Fundation of China granted Nos. 51778589 and 51308515+1 种基金Heilongjiang Province Natural Science Fund granted No. E2017065the National Key Research and Development Program granted No. 2017YFC150165
文摘Serial destructive earthquakes have caused heavy casualties and economic losses to the city in southwestern of China. The Ludian Ms 6.5 earthquake and the Jinggu Ms 6.6 earthquake occurred in Yunnan province in 2014. There is a question of why the two events with almost the same level of magnitude caused differences in earthquake damage. To understand the uniqueness of the phenomenon, this paper focuses on the characteristics of the ground motions and post-earthquake field investigation for the two events. Firstly, we present an overview of the residuals between the Ludian earthquake and the Jinggu earthquake based on the YW06 Ground Motion Prediction Equation (GMPE), and explain the unusual destructiveness of the strong ground motion. Then we analyze the ground motion recordings at selected typical station, based on the strong motion parameters: equivalent predominant frequency and Arias intensity. The result exhibits a good agreement with the Chinese seismic intensity scale. This study would be helpful to gain a better knowledge of the characteristics and variability of ground motions for Ms6 class earthquakes in China and to understand the implications to future earthquakes with similar focal mechanism and local condition.
基金funded by National Natural Science Foundation of China (50808168)Ministry of Science and Technology of Weihai (2008087)Foundation of Harbin Institute of Technology at Weihai (HIT(Y)200801)
文摘This paper aimed to examine the site dependence and evaluate the methods for site analysis of far-source ground motions. This was achieved through the examination of frequency content estimated by different methods based on strong ground motions recorded at twelve far-source stations in Shandong province during the Wenchuan earthquake. The stations were located in sites with soil profiles ranging from code classes Ⅰ to Ⅲ. Approaches used included the Fourier amplitude spectrum (FAS), the earthquake response spectrum (ERS), the spectral ratio between the horizontal and the vertical components (H/V), the spectral ratio between the spectra at the site and at a reference site (SRRS), and coda wave analysis (CWA). Results showed that major periods of these ground motions obtained by FAS, ERS and H/V ratio methods were all evidently larger than site dominant periods; the periods were also different from each other and mainly reflected the frequency content of long period components. Prominent periods obtained by the SRRS approach neither illuminated the long period aspect nor efficiently determined site features of the motions. The CWA resulted in a period close to site period for stations with good quality recordings. The results obtained in this study will be useful for the evaluation of far-source effect in constructing seismic design spectra and in selecting methods for ground motion site analysis.
基金supported by the Science and Technology Commission of Shanghai Municipality (Grant No.04JC14035)
文摘A fragility calculation scheme is estabtished in this paper for porcelain-type equipments subjected to random earthquake ground motions. All steps of the method are illustrated by the seismic damage analysis of GW4-110 disconnect switch. The model of the equipment is built applying the finite element method with flexible joints, and the seismic response of the equipment is analyzed using elastic time history method. On the base, according to the strength damage index and Monte-Carlo Method, the seismic damage ratios are counted and the seismic fragility curves are presented. Then the seismic damage of GW4-110 disconnect switch can be predicted.
基金supported by the Science Foundation of the Institute of Engineering Mechanics,China Earthquake Administration(No.2018B03)National Natural Science Foundation of China(No.51808514).
文摘The stochastic finite-fault simulation method was applied to synthesize the horizontal ground acceleration seismograms produced by the MW6.1 Ludian earthquake on August 3,2014.For this purpose,we produced first a total of 200 kinematic source models for the Ludian event,which are characterized by the heterogeneous slip on the conjugated ruptured fault and the slip-dependent spreading of the rupture front.The results indicated that the heterogeneous slip and the spatial extent of the ruptured fault play dominant roles in the spatial distribution of ground motions in the near-fault area.The peak ground accelerations(PGAs)and 5%-damped pseudospectral accelerations(PSAs)at periods shorter than 0.5 s estimated on the resulting synthetics generally match well with the observations at stations with Joyner-Boore distances(RJB)greater than 20 km.The synthetic PGVs and PSAs at periods of 0.5 s and 0.75 s are in good agreement with predicted medians by the Yu14 model(Yu et al.,2014).However,the synthetic results are generally much lower than the predicted medians by BSSA14 model(Boore et al.,2014).Moreover,the ground motion variability caused by the randomness in the source rupture process was evaluated by these synthetics.The standard deviations of PSAs on the base-10 logarithmic scale,Sigma[log10(PSA)],are closely dependent on either the spectral period or the RJB.The Sigma[log10(PSA)]remains a constant approximately 0.55 at periods shorter than 0.1 s,and then increase continuously up to^0.13 as the period increases from 0.1 to 2.0 s.The Sigma[log10(PSA)]values at periods of 0.1‒2.0 s show the downward tendency as the RJB values increase.However,the Sigma[log10(PSA)]values at periods shorter than 0.1 s decrease as the RJB values increase up to^50 km,and then increase with the increasing RJB.Furthermore,we found that the ground-motion variability shows the significant dependence on the azimuth.
基金the National Key Research and Development Program of China(No.2018YFE0109800)the National Natural Science Foundation of China(Nos.51639006,and 51738001).
文摘We focus here on the rupture directivity effect on the spatial distribution and attenuation characteristics of near-field ground motions during the 2008 MW7.9 Wenchuan earthquake.We examine the difference between the observed ground motions in and opposite the rupture directions and compare them with Next Generation Attenuation-West2(NGA-West2)ground motion prediction models.The isochrone directivity predictor is used to quantify the band-limited nature of the rupture directivity effect on strong ground motion.Our results show that the observed peak ground velocity(PGV)and spectral accelerations of periods of 1.0 s and longer are significantly amplified in the rupture direction,but de-amplified in the opposite direction affected by rupture directivity effect of this event.In contrast,the effect of rupture directivity on the observed peak ground acceleration(PGA)and periods of shorter than 1.0 s are relatively weak.The rupture directivity of this event shows clear period dependent and band limited characteristics with the strongest effect occurring around the period of 7.5 s.
基金supported by the National Key Research and Development Program of China (No. 2022YFC3003503)the Special Fund of the Institute of Geophysics, China Earthquake Administration (No. DQJB20B23)+1 种基金supported by the Istanbul Technical University Research Fund (ITU-BAP)by the the Alexander von Humboldt Foundation Research Fellowship Award through the Humboldt-Stiftung Follow-Up Program
文摘In this study,we analyzed 100 three-component strong ground motion records observed within 200 km of the causative fault of the 6 February 2023 M_(W)7.8 Pazarcık(Kahramanmaraş)Earthquake in SE Türkiye.The wavelet method was utilized to identify and analyze the characteristics of pulse-like ground motions in the near-fault region,while considering the uncertainty of the pulse orientation during the analysis.Our investigation focused on the effects of the focal mechanism and rupture process on the spatial distribution,pulse orientation,and maximum pulse direction of the observed pulse-like ground motion.We also analyzed the amplitude and period of the observed ground pulses and the effect of long-period amplification on the ground motion response spectra.Our results indicated the following:(1)A total of 21 typical ground velocity pulses were observed during this earthquake,exhibiting complex characteristics due to the influence of the strike-slip mechanism and rupture directivity.Most ground pulses(17 out of 21)were recorded within 20 km of the fault,in a wide range of orientations,including normal and parallel to the fault direction.The waveforms exhibited unidirectional features,indicating the effects of left-lateral fault slip.Distinct pulses observed more than 20 km from the fault were mainly oriented normal to the fault.The waveforms were bidirectional with double-or multi-round trips as a result of rupture directivity.(2)The amplitudes of the observed pulses ranged from 30.5 to 220.0 cm/s,with the largest peak velocity of 220.0 cm/s observed at Station 3138.The pulse periods ranged from 2.3 to 14.5 s,with the longest pulse period of 14.5 s observed at Station 3116.The amplitude and period of the pulses observed during this earthquake were comparable to those of similar-magnitude global earthquakes.The amplitude of the pulses decreased significantly with increasing fault distance,whereas the pulse period was not significantly affected by the fault distance.(3)Compared with non-pulse records,the velocity pulse records had a pronounced amplification effect on the acceleration response spectra near the pulse period,with factors ranging from 2.1 to 5.8.The larger velocity pulses also significantly amplified the velocity response spectra,particularly over the long periods.This significant amplification effect of the pulses on the response spectra leads to empirical models underestimating the long-period earthquake ground motion.
文摘Based on the data of first motion of 11 earthquake sequences with ML ≥ 3.0 recorded by the Telemetric Seismic Network of Shanxi since the 1980s, the first motion characteristics of each earthquake sequence were studied. It is known that earthquake sequences of different types have different consistency characteristics of focal mechanism. The decrease and increase of the first motion contradictory sign ratios could be taken as an index to judge whether there would still be a larger earthquake to come after the earthquake sequence.
基金Project supported by the National Natural Science Foundation of China (No.50008017)
文摘Representing earthquake ground: motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman filter is applied to estimate the time varying coefficients. The comparison between the estimation results of unscented Kalman filter and Kalman filter methods shows that unscented Kalman filter can more precisely represent the distribution of the spectral peaks in time-frequency plane than Kalman filter, and its time and frequency resolution is finer which ensures its better ability to track the local properties of earthquake ground motions and to identify the systems with nonlinearity or abruptness. Moreover, the estimation results of ARMA models with different orders indicate that the theoretical frequency resolving power of ARMA model which was usually ignored in former studies has great effect on the estimation precision of instantaneous spectrum and it should be taken as one of the key factors in order selection of ARMA model.