Let B^H1,K1 and BH2,K2 be two independent bi-fractional Brownian motions. In this paper, as a natural extension to the fractional regression model, we consider the asymptotic behavior of the sequence Sn:=∑i=0^n-1K...Let B^H1,K1 and BH2,K2 be two independent bi-fractional Brownian motions. In this paper, as a natural extension to the fractional regression model, we consider the asymptotic behavior of the sequence Sn:=∑i=0^n-1K(n^αBi^H,K1)(Bi+1^H2,K2-Bi^H2,K2)where K is a standard Gaussian kernel function and the bandwidth parameter α satisfies certain hypotheses. We show that its limiting distribution is a mixed normal law involving the local time of the bi-fractional Brownian motion B^H1,K1. We also give the stable convergence of the sequence Sn by using the techniques of the Malliavin calculus.展开更多
In this paper, we introduce a class of Gaussian processes Y={Y(t):t∈R^N},the so called hifractional Brownian motion with the indcxes H=(H1,…,HN)and α. We consider the (N, d, H, α) Gaussian random field x(t...In this paper, we introduce a class of Gaussian processes Y={Y(t):t∈R^N},the so called hifractional Brownian motion with the indcxes H=(H1,…,HN)and α. We consider the (N, d, H, α) Gaussian random field x(t) = (x1 (t),..., xd(t)),where X1 (t),…, Xd(t) are independent copies of Y(t), At first we show the existence and join continuity of the local times of X = {X(t), t ∈ R+^N}, then we consider the HSlder conditions for the local times.展开更多
基金Acknowledgements The authors would like to thank the anonymous referees whose remarks and suggestions greatly improved the presentation of the paper. Guangjun Shen was supported in part by the National Natural Science Foundation of China (Grant No. 11271020) and the Natural Science Foundation of Anhui Province (1208085MA11). Litan YAN was partially supported by the National Natural Science Foundation of China (Grant No. 11171062) and the Innovation Program of Shanghai Municipal Education Commission (12ZZ063).
文摘Let B^H1,K1 and BH2,K2 be two independent bi-fractional Brownian motions. In this paper, as a natural extension to the fractional regression model, we consider the asymptotic behavior of the sequence Sn:=∑i=0^n-1K(n^αBi^H,K1)(Bi+1^H2,K2-Bi^H2,K2)where K is a standard Gaussian kernel function and the bandwidth parameter α satisfies certain hypotheses. We show that its limiting distribution is a mixed normal law involving the local time of the bi-fractional Brownian motion B^H1,K1. We also give the stable convergence of the sequence Sn by using the techniques of the Malliavin calculus.
基金Supported by the National Natural Science Foundation of China(No.10571159)Specialized Research Fund for the Doctor Program of Higher Education(No.2002335090)
文摘In this paper, we introduce a class of Gaussian processes Y={Y(t):t∈R^N},the so called hifractional Brownian motion with the indcxes H=(H1,…,HN)and α. We consider the (N, d, H, α) Gaussian random field x(t) = (x1 (t),..., xd(t)),where X1 (t),…, Xd(t) are independent copies of Y(t), At first we show the existence and join continuity of the local times of X = {X(t), t ∈ R+^N}, then we consider the HSlder conditions for the local times.