期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Asymptotic behavior for bi-fractional regression models via Malliavin calculus
1
作者 Guangjun SHEN Litan YAN 《Frontiers of Mathematics in China》 SCIE CSCD 2014年第1期151-179,共29页
Let B^H1,K1 and BH2,K2 be two independent bi-fractional Brownian motions. In this paper, as a natural extension to the fractional regression model, we consider the asymptotic behavior of the sequence Sn:=∑i=0^n-1K... Let B^H1,K1 and BH2,K2 be two independent bi-fractional Brownian motions. In this paper, as a natural extension to the fractional regression model, we consider the asymptotic behavior of the sequence Sn:=∑i=0^n-1K(n^αBi^H,K1)(Bi+1^H2,K2-Bi^H2,K2)where K is a standard Gaussian kernel function and the bandwidth parameter α satisfies certain hypotheses. We show that its limiting distribution is a mixed normal law involving the local time of the bi-fractional Brownian motion B^H1,K1. We also give the stable convergence of the sequence Sn by using the techniques of the Malliavin calculus. 展开更多
关键词 bi-fractional Brownian motion (bi-fBm) Malliavin calculus regression model
原文传递
Results on Local Times of a Class of Multiparameter Gaussian Processes
2
作者 Zong-mao Cheng Xiu-yun Wang Zheng-yan Lin 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2006年第1期81-90,共10页
In this paper, we introduce a class of Gaussian processes Y={Y(t):t∈R^N},the so called hifractional Brownian motion with the indcxes H=(H1,…,HN)and α. We consider the (N, d, H, α) Gaussian random field x(t... In this paper, we introduce a class of Gaussian processes Y={Y(t):t∈R^N},the so called hifractional Brownian motion with the indcxes H=(H1,…,HN)and α. We consider the (N, d, H, α) Gaussian random field x(t) = (x1 (t),..., xd(t)),where X1 (t),…, Xd(t) are independent copies of Y(t), At first we show the existence and join continuity of the local times of X = {X(t), t ∈ R+^N}, then we consider the HSlder conditions for the local times. 展开更多
关键词 bi-fractional Brownian motiom local time Gaussian random field
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部