The synthesis of ultrasmall metal nanoclusters(NCs) with high catalytic activities is of great importance for the development of clean and renewable energy technologies but remains a challenge. Here we report a facile...The synthesis of ultrasmall metal nanoclusters(NCs) with high catalytic activities is of great importance for the development of clean and renewable energy technologies but remains a challenge. Here we report a facile wet-chemical method to prepare ~1.0 nm Au Pd NCs supported on amine-functionalized carbon blacks. The Au Pd NCs exhibit a specific activity of 5.98 mA cm_(AuPd)^(-2)and mass activity of 5.25 A mg_(auPd)^(-1) for ethanol electrooxidation, which are far better than those of commercial Pd/C catalysts(1.74 mAcm_(AuPd)^(-2) and 0.54 A mg_(Pd)^(-1) ). For formic acid dehydrogenation, the Au Pd NCs have an initial turn over frequency of 49339 h^(-1) at 298 K without any additive, which is much higher than those obtained for most of reported Au Pd catalysts. The reported synthesis may represent a facile and low-cost approach to prepare other ultrasmall metal NCs with high catalytic activities for various applications.展开更多
Light cycle oil(LCO) with high content of poly-aromatics was difficult to upgrade and convert,which had hindered upgrading fuel quality to meet with the standard of automotive diesel for the purpose of sustainable dev...Light cycle oil(LCO) with high content of poly-aromatics was difficult to upgrade and convert,which had hindered upgrading fuel quality to meet with the standard of automotive diesel for the purpose of sustainable development.The hydrocracking behaviors of typical aromatics in LCO of naphthalene and tetralin were investigated over NiMo and CoMo catalysts.Several characterization methods including N2-adsoprtion and desorption,ammonia temperature-programmed desorption(NH3-TPD),Pyridine infrared spectroscopy(Py-IR),CO infrared spectroscopy(CO-IR),Raman and X-ray photoelectron spectroscopy(XPS) were applied to determine the properties of different catalysts.The results showed that CoMo catalyst with high concentration of S-edges could hydrosaturate more naphthalene to tetralin but exhibit lower yield of high-value light aromatics(carbon numbers less than 10) than NiMo catalyst.NiMo catalyst with high concentration of Mo-edges also presented a higher selectivity of converting naphthalene into cyclanes than CoMo catalyst.Subsequently,the naphthalene and LCO hydrocracking performances were also investigated over different catalysts systems.The activity evaluation and kinetic analysis results showed that the naphthalene hydrocracking conversion and the yield of light aromatics for CoMo-AY/NiMo-AY grading catalysts were higher than NiMo-AY/CoMo-AY grading catalysts at same condition.A stepwise reaction principle was proposed to explain the high efficiency of CoMo-AY/NiMoAY grading catalysts.Finally,the LCO hydrocracking evaluation results confirmed that CoMo-AY/NiMoAY catalysts grading system with low carbon deposition and high stability could remain high percentage of active phases,which was more efficient to convert LCO to high-octane gasoline.展开更多
Designing electrochemical catalysts has become a research hotspot due to their accelerating the polysulfide conversion of the sulfur cathode to inhibit the“shuttle effect”in lithium-sulfur batteries.However,it is st...Designing electrochemical catalysts has become a research hotspot due to their accelerating the polysulfide conversion of the sulfur cathode to inhibit the“shuttle effect”in lithium-sulfur batteries.However,it is still a great challenge to design the heterogeneous selective electrochemical catalyst for inhibiting the“shuttle effect”.Herein,nickel cobalt phosphide and cobalt phosphide as the heterogeneous catalyst active sites embedded in the nitrogen-doped hollow carbon nanocages(NiCoP@CoP/NC)are reported,used for multi-step and multi-phase sulfur electrode reaction,and it is found that metal-sulfur d-p hybridization can effectively indicate the intrinsic catalytic activity of metal site.Division of labor and cooperation of the bi-active NiCoP@CoP as heterogeneous catalysts propel the stepwise polysulfide conversion.NiCoP and CoP sites preferentially accelerate the long-chain polysulfide conversion reaction(S_(8)■LiPSs)and the short-chain polysulfide conversion reactions(LiPSs■Li_(2)S),respectively.Moreover,the hollow and porous N-doped carbon structure can successfully suppress the volume effect and improve the conductivity of the sulfur cathode.The unique design can obtain an effective inhibition of the shuttle effect and rapid electrode reaction.As a result,Li-S batteries demonstrate a high initial capacity of 1063 mAh g^(-1) and a low-capacity decay of 0.04% per cycle within 1000 cycles.Our work provides a feasible idea for the design of host materials in Li-S batteries.展开更多
A series of Ni/HZSM-5 and Ni/HIM-5 bi-functional catalysts were synthesized and applied to the aqueous-phase hydrodeoxygenation(HDO)of phenol.The Ni dispersibility and particle sizes were shown to be directly related ...A series of Ni/HZSM-5 and Ni/HIM-5 bi-functional catalysts were synthesized and applied to the aqueous-phase hydrodeoxygenation(HDO)of phenol.The Ni dispersibility and particle sizes were shown to be directly related to the porosity and crystal sizes of the parent zeolites,which further influenced the catalytic performances.The large pores and small crystal sizes of the parent zeolites were beneficial for dispersing Ni and forming small Ni particles,and the corresponding Ni/zeolite catalyst exhibited a higher phenol conversion and selectivity towards hydrocarbons.Importantly,the Ni/HIM-5 bi-functional catalyst exhibited a high activity(98.3%)and high selectivity for hydrocarbons(98.8%)when heated at 220°C for 1 h and is thus a new potential catalyst for the HDO of phenolics to form hydrocarbons in the aqueous phase.展开更多
Carbon nanotubes/graphene hybrid materials with excellent physicochemical properties can be widely ap-plied in the fields of energy storage,electrocatalysis,sensing,etc.Reducing the self-stacking and achiev-ing covale...Carbon nanotubes/graphene hybrid materials with excellent physicochemical properties can be widely ap-plied in the fields of energy storage,electrocatalysis,sensing,etc.Reducing the self-stacking and achiev-ing covalent interaction between carbon nanotubes and graphene are important to ensure a stable hi-erarchical architecture and effective mass transfer.Herein,we propose a one-step strategy to synthesize 3D interconnected carbon nanotubes/graphene hybrids on the easy-to-remove biomass-derived substrate.The calcined natural cuttlebone as bi-functional catalyst precursor can simultaneously grow carbon nan-otubes and graphene by one-step chemical vapor deposition without the addition of extra metal catalysts,while the interconnected structure can act as the porous template for graphene growth.The simultane-ous growth process can obtain covalent bonding between carbon nanotubes and graphene,while the crystalline quality and interlayer space can be adjusted by different carbon sources and growth parame-ters(e.g.,temperature).The one-step grown carbon nanotubes/graphene hybrids with seamless interfaces and hierarchical interconnected 3D structure can effectively enhance the electron transfer as well as the electrolyte infiltration efficiency.When utilized as lithium-ion batteries(LIBs)anode,a high specific ca-pacity(544 mAh g^(-1) at 0.1 A g^(-1)),good rate capability(200 mAh g^(-1) at 6.4 A g^(-1) with an ultrashort charge time of 113 s),and excellent cyclic stability can be achieved.This simple and one-step carbon nanotubes/graphene hybrids fabrication strategy can be easily scale-up and applied in various fields.展开更多
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ...Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.展开更多
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3...Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.展开更多
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int...Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.展开更多
The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs ...The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron.The constructed iron SACs(h^(3)-FNC)with a high metal loading of 6.27 wt%and an optimized adjacent Fe distance of~4 A exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects.Attractively,a“density effect”has been found at a high-enough metal doping amount,at which individual active sites become close enough to interact with each other and alter the electronic structure,resulting in significantly boosted intrinsic activity of single-atomic iron sites in h^(3)-FNCs by 2.3 times compared to low-and medium-loading SACs.Consequently,the overall catalytic activity of h^(3)-FNC is highly improved,with mass activity and metal mass-specific activity that are,respectively,66 and 315 times higher than those of commercial Pt/C.In addition,h^(3)-FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion(O_(2)·^(−))and glutathione(GSH)depletion.Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h^(3)-FNCs in promoting wound healing.This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections.展开更多
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
There has been a continuous need for high active, excellently durable and low-cost electrocatalysts for rechargeable zinc-air batteries. Among many low-cost metal based candidates, transition metal oxides with the CNT...There has been a continuous need for high active, excellently durable and low-cost electrocatalysts for rechargeable zinc-air batteries. Among many low-cost metal based candidates, transition metal oxides with the CNTs composite have gained increasing attention. In this paper, the 3-D hollow sphere MnO_2 nanotube-supported Co_3O_4 nanoparticles and its carbon nanotubes hybrid material(Co_3 O_4/MnO_2-CNTs) have been synthesized via a simple co-precipitation method combined with post-heat treatment. The morphology and composition of the catalysts are thoroughly analyzed through SEM, TEM, TEM-mapping, XRD, EDX and XPS. In comparison with the commercial 20% Pt/C, Co_3O_4/MnO_2,bare MnO_2 nanotubes and CNTs, the hybrid Co_3O_4/MnO_2-CNTs-350 exhibits perfect bi-functional catalytic activity toward oxygen reduction reaction and oxygen evolution reaction under alkaline condition(0.1 M KOH). Therefore, high cell performances are achieved which result in an appropriate open circuit voltage(~1.47 V),a high discharge peak power density(340 mW cm^(-2)) and a large specific capacity(775 mAh g^(-1) at 10 mA cm^(-2)) for the primary Zn-air battery, a small charge-discharge voltage gap and a high cycle-life(504 cycles at 10 mA cm^(-2) with 10 min per cycle) for the rechargeable Zn-air battery. In particular, the simple synthesis method is suitable for a large-scale production of this bifunctional material due to a green, cost effective and readily available process.展开更多
Two kinds of bi-functional transition metal doped mesoporous materials(Fe-HMS and Fe-MCM-41) are prepared using one-step hydrothermal method and then treated with hydrochloric acid ethanol solution.The N2 adsorption a...Two kinds of bi-functional transition metal doped mesoporous materials(Fe-HMS and Fe-MCM-41) are prepared using one-step hydrothermal method and then treated with hydrochloric acid ethanol solution.The N2 adsorption and HRTEM results show that both of Fe-HMS and Fe-MCM-41 possess mesoporous structure. The UV–vis results suggest that the Fe species are mainly located within the framework. The basicity of as-prepared samples was studied by temperature programmed desorption using CO2 as probe molecule(CO2-TPD). The catalytic performance of Fe-HMS and Fe-MCM-41 in CO2 cycloaddition largely depends on the amount of the accessible basic sites. The acid–base active sites, framework Fe and PDDA species cooperatively catalyze the CO2 cycloaddition for the production of cyclic carbonates under the condition without any co-catalyst. The conversion of epichlorohydrin(ECH) is 97.4% and the selectivity of chloropropene carbonate is 92.9% under optimal conditions. The approximate rate constant of cycloaddition reaction of CO2 with ECH under optimum reaction temperature is calculated. It is worth noting that the Fe-HMS material shows superior reusability than Fe-MCM-41. In addition, this work provides a facile way on the synthesis of bi-functional acid–base heterogeneous catalyst with outstanding catalytic performance for the fixation of CO2.展开更多
Sorption enhanced steam methane reforming(SE-SMR) was performed to maximize hydrogen production and contemporary remove COfrom the product stream using bi-functional sorbent-catalyst compounds.Samples were tested at...Sorption enhanced steam methane reforming(SE-SMR) was performed to maximize hydrogen production and contemporary remove COfrom the product stream using bi-functional sorbent-catalyst compounds.Samples were tested at two different scales: micro and laboratory. The CaO amount varied in the CaO-CaAlOsorbent system synthesized by wet mixing(CaO content of 100 wt%, 56 wt%, 30 wt%, or 0 wt% and balance of CaAlO) which were upgraded to bi-functional compounds by impregnation of 3 wt% of Ni. Nitrogen adsorption(BET/BJH), X-Ray Diffraction(XRD), Temperature-Programmed Reduction(TPR) and Scanning and Transmission Electronic Microscopy(SEM and TEM, respectively) analyses were performed to characterize structural and textural properties and reducibility of the bi-functional materials and evaluate their catalytic behavior. A fixed sorbent composition CaO-CaAlO(56 wt% of CaO and CaAlObalance), was chosen to study the effect of different weight hourly space times(WHST) and CHstream compositions in SE-SMR activity. Impregnated mayenite at both micro and laboratory scales showed stable Hcontent of almost 74%, with CHconversion of 72% similarly to the values reported by the sample containing 30 wt% of CaO in the post-breakthrough.Sample with 30 wt% of CaO showed promisingly behavior, enhancing Hcontent up to almost 94.5%.When the sorption enhanced reaction is performed roughly 89% of CHconversion is achieved, and after the pre-breakthrough, the catalyst worked at the thermodynamic level. During cycling sorption/regeneration experiments, even if COremoval efficiency slightly decreases, CHconversion and Hyield remain stable.展开更多
One of the critical challenges that limit broad commercialization of proton exchange membrane fuel cells(PEMFC)is to reduce the usage of Pt while maintaining high power output and sufficient durability.Herein,a novel ...One of the critical challenges that limit broad commercialization of proton exchange membrane fuel cells(PEMFC)is to reduce the usage of Pt while maintaining high power output and sufficient durability.Herein,a novel bifunctional layer consisting of vertically aligned carbon nanotubes(VACNTs)and nanoparticles of Pt-Co catalysts(Pt-Co/VACNTs)is reported for highperformance PEMFCs.Readily prepared by a two-step process,the Pt-Co/VACNTs layer with a hydrophilic catalyst-loaded side and a hydrophobic gas diffusion side enables a PTFE-free electrode structure with fully exposed catalyst active sites and superior gas–water diffusion capability.When tested in a PEMFC,the bi-functional Pt-Co/VACNTs layer with ultralow Pt loading(~65μgcathodecm-2)demonstrates a power density of 19.5 kW gPt cathode-1 at 0.6 V,more than seven times that of a cell with commercial Pt/C catalyst(2.7 kW gPt cathode-1 at 0.6 V)at a loading of 400μgcathodecm-2 tested under similar conditions.This remarkable design of VACNTs-based catalyst with dual functionalities enables much lower Pt loading,faster mass transport,and higher electrochemical performance and stability.Further,the preparation procedure can be easily scaled up for low-cost fabrication and commercialization.展开更多
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
A novel bi-functional photorefractive acrylate polymer with pendant carbazolyl groups and azo derivatives as side chains was synthesized. Photorefractive experiments showed a high two-beam coupling gain coefficient of...A novel bi-functional photorefractive acrylate polymer with pendant carbazolyl groups and azo derivatives as side chains was synthesized. Photorefractive experiments showed a high two-beam coupling gain coefficient of 93 cm(-1), diffraction efficiency of 12% and electro-optic coefficient of 26 pm/V were obtained.展开更多
We report an organic/inorganic hybridized nanocomposite consisting of a bi-functional poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl serves as a polymeric charge-transporting and second-order nonliner optical matrix, ...We report an organic/inorganic hybridized nanocomposite consisting of a bi-functional poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl serves as a polymeric charge-transporting and second-order nonliner optical matrix, and CdS nanoparticles as photosensitizers to manifest photorefractive (PR) effect. The unpoled PVNPAK film exhibits a second harmonic generation (SHG) coefficient of 4.7 pm/V due to the possibility of self-alignment of the azo chromophore. Significant enhancement of photoconductivity is noticed with the increase of CdS nanoparticles concentration. The photorefractive property of the polymer nanocomposites were determined by two-beam coupling (TBC) experiment. The TBC gain and diffraction efficiency of 11.89 cm-1 and 3.2% were obtained for PVNPAK/CdS at zero electrical field.展开更多
Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-elec...Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy.展开更多
基金supported by the National Natural Science Foundation of China (51901083)the Fundamental Research Funds for the Central Universities。
文摘The synthesis of ultrasmall metal nanoclusters(NCs) with high catalytic activities is of great importance for the development of clean and renewable energy technologies but remains a challenge. Here we report a facile wet-chemical method to prepare ~1.0 nm Au Pd NCs supported on amine-functionalized carbon blacks. The Au Pd NCs exhibit a specific activity of 5.98 mA cm_(AuPd)^(-2)and mass activity of 5.25 A mg_(auPd)^(-1) for ethanol electrooxidation, which are far better than those of commercial Pd/C catalysts(1.74 mAcm_(AuPd)^(-2) and 0.54 A mg_(Pd)^(-1) ). For formic acid dehydrogenation, the Au Pd NCs have an initial turn over frequency of 49339 h^(-1) at 298 K without any additive, which is much higher than those obtained for most of reported Au Pd catalysts. The reported synthesis may represent a facile and low-cost approach to prepare other ultrasmall metal NCs with high catalytic activities for various applications.
基金supported by the National Natural Science Foundation of China (Nos. 21878330, 21676298)the National Science and Technology Major Project, the CNPC Key Research Project (2016E-0707)the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award (No. OSR-2019-CPF-4103.2)。
文摘Light cycle oil(LCO) with high content of poly-aromatics was difficult to upgrade and convert,which had hindered upgrading fuel quality to meet with the standard of automotive diesel for the purpose of sustainable development.The hydrocracking behaviors of typical aromatics in LCO of naphthalene and tetralin were investigated over NiMo and CoMo catalysts.Several characterization methods including N2-adsoprtion and desorption,ammonia temperature-programmed desorption(NH3-TPD),Pyridine infrared spectroscopy(Py-IR),CO infrared spectroscopy(CO-IR),Raman and X-ray photoelectron spectroscopy(XPS) were applied to determine the properties of different catalysts.The results showed that CoMo catalyst with high concentration of S-edges could hydrosaturate more naphthalene to tetralin but exhibit lower yield of high-value light aromatics(carbon numbers less than 10) than NiMo catalyst.NiMo catalyst with high concentration of Mo-edges also presented a higher selectivity of converting naphthalene into cyclanes than CoMo catalyst.Subsequently,the naphthalene and LCO hydrocracking performances were also investigated over different catalysts systems.The activity evaluation and kinetic analysis results showed that the naphthalene hydrocracking conversion and the yield of light aromatics for CoMo-AY/NiMo-AY grading catalysts were higher than NiMo-AY/CoMo-AY grading catalysts at same condition.A stepwise reaction principle was proposed to explain the high efficiency of CoMo-AY/NiMoAY grading catalysts.Finally,the LCO hydrocracking evaluation results confirmed that CoMo-AY/NiMoAY catalysts grading system with low carbon deposition and high stability could remain high percentage of active phases,which was more efficient to convert LCO to high-octane gasoline.
基金supported by the National Natural Science Foundation of China(Nos.NSFC 51772060,51672059,and 51621091)the Heilongjiang Touyan Team Program,and the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2021003)。
文摘Designing electrochemical catalysts has become a research hotspot due to their accelerating the polysulfide conversion of the sulfur cathode to inhibit the“shuttle effect”in lithium-sulfur batteries.However,it is still a great challenge to design the heterogeneous selective electrochemical catalyst for inhibiting the“shuttle effect”.Herein,nickel cobalt phosphide and cobalt phosphide as the heterogeneous catalyst active sites embedded in the nitrogen-doped hollow carbon nanocages(NiCoP@CoP/NC)are reported,used for multi-step and multi-phase sulfur electrode reaction,and it is found that metal-sulfur d-p hybridization can effectively indicate the intrinsic catalytic activity of metal site.Division of labor and cooperation of the bi-active NiCoP@CoP as heterogeneous catalysts propel the stepwise polysulfide conversion.NiCoP and CoP sites preferentially accelerate the long-chain polysulfide conversion reaction(S_(8)■LiPSs)and the short-chain polysulfide conversion reactions(LiPSs■Li_(2)S),respectively.Moreover,the hollow and porous N-doped carbon structure can successfully suppress the volume effect and improve the conductivity of the sulfur cathode.The unique design can obtain an effective inhibition of the shuttle effect and rapid electrode reaction.As a result,Li-S batteries demonstrate a high initial capacity of 1063 mAh g^(-1) and a low-capacity decay of 0.04% per cycle within 1000 cycles.Our work provides a feasible idea for the design of host materials in Li-S batteries.
基金This work was supported by the National Natural Science Foundation of China(Grant No.21908225)the National Key Research and Development Program of China(Grant No.2016YFB0600505)Youth Innovation Promotion Association,CAS(2014037).
文摘A series of Ni/HZSM-5 and Ni/HIM-5 bi-functional catalysts were synthesized and applied to the aqueous-phase hydrodeoxygenation(HDO)of phenol.The Ni dispersibility and particle sizes were shown to be directly related to the porosity and crystal sizes of the parent zeolites,which further influenced the catalytic performances.The large pores and small crystal sizes of the parent zeolites were beneficial for dispersing Ni and forming small Ni particles,and the corresponding Ni/zeolite catalyst exhibited a higher phenol conversion and selectivity towards hydrocarbons.Importantly,the Ni/HIM-5 bi-functional catalyst exhibited a high activity(98.3%)and high selectivity for hydrocarbons(98.8%)when heated at 220°C for 1 h and is thus a new potential catalyst for the HDO of phenolics to form hydrocarbons in the aqueous phase.
基金the financially supported from the National Nat-ural Science Foundation of China(Nos.21978178,22008157,and 21776187)the Distinguished Young Scholars for the Natural Science Foundation of Sichuan Province(No.2023NSFSC1915)。
文摘Carbon nanotubes/graphene hybrid materials with excellent physicochemical properties can be widely ap-plied in the fields of energy storage,electrocatalysis,sensing,etc.Reducing the self-stacking and achiev-ing covalent interaction between carbon nanotubes and graphene are important to ensure a stable hi-erarchical architecture and effective mass transfer.Herein,we propose a one-step strategy to synthesize 3D interconnected carbon nanotubes/graphene hybrids on the easy-to-remove biomass-derived substrate.The calcined natural cuttlebone as bi-functional catalyst precursor can simultaneously grow carbon nan-otubes and graphene by one-step chemical vapor deposition without the addition of extra metal catalysts,while the interconnected structure can act as the porous template for graphene growth.The simultane-ous growth process can obtain covalent bonding between carbon nanotubes and graphene,while the crystalline quality and interlayer space can be adjusted by different carbon sources and growth parame-ters(e.g.,temperature).The one-step grown carbon nanotubes/graphene hybrids with seamless interfaces and hierarchical interconnected 3D structure can effectively enhance the electron transfer as well as the electrolyte infiltration efficiency.When utilized as lithium-ion batteries(LIBs)anode,a high specific ca-pacity(544 mAh g^(-1) at 0.1 A g^(-1)),good rate capability(200 mAh g^(-1) at 6.4 A g^(-1) with an ultrashort charge time of 113 s),and excellent cyclic stability can be achieved.This simple and one-step carbon nanotubes/graphene hybrids fabrication strategy can be easily scale-up and applied in various fields.
基金support from the Czech Science Foundation,project EXPRO,No 19-27454Xsupport by the European Union under the REFRESH—Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition from the Ministry of the Environment of the Czech Republic+1 种基金Horizon Europe project EIC Pathfinder Open 2023,“GlaS-A-Fuels”(No.101130717)supported from ERDF/ESF,project TECHSCALE No.CZ.02.01.01/00/22_008/0004587).
文摘Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.
基金Research Institute for Smart Energy(CDB2)the grant from the Research Institute for Advanced Manufacturing(CD8Z)+4 种基金the grant from the Carbon Neutrality Funding Scheme(WZ2R)at The Hong Kong Polytechnic Universitysupport from the Hong Kong Polytechnic University(CD9B,CDBZ and WZ4Q)the National Natural Science Foundation of China(22205187)Shenzhen Municipal Science and Technology Innovation Commission(JCYJ20230807140402006)Start-up Foundation for Introducing Talent of NUIST and Natural Science Foundation of Jiangsu Province of China(BK20230426).
文摘Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.
基金financially supported by the National Natural Science Foundation of China(22309137,22279095)Open subject project State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2023001).
文摘Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3804500)the National Natural Science Foundation of China(Grant No.52202352,22335006)+4 种基金the Shanghai Municipal Health Commission(Grant No.20224Y0010)the CAMS Innovation Fund for Medical Sciences(Grant No.2021-I2M-5-012)the Basic Research Program of Shanghai Municipal Government(Grant No.21JC1406000)the Fundamental Research Funds for the Central Universities(Grant No.22120230237,2023-3-YB-11,22120220618)the Basic Research Program of Shanghai Municipal Government(23DX1900200).
文摘The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron.The constructed iron SACs(h^(3)-FNC)with a high metal loading of 6.27 wt%and an optimized adjacent Fe distance of~4 A exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects.Attractively,a“density effect”has been found at a high-enough metal doping amount,at which individual active sites become close enough to interact with each other and alter the electronic structure,resulting in significantly boosted intrinsic activity of single-atomic iron sites in h^(3)-FNCs by 2.3 times compared to low-and medium-loading SACs.Consequently,the overall catalytic activity of h^(3)-FNC is highly improved,with mass activity and metal mass-specific activity that are,respectively,66 and 315 times higher than those of commercial Pt/C.In addition,h^(3)-FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion(O_(2)·^(−))and glutathione(GSH)depletion.Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h^(3)-FNCs in promoting wound healing.This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections.
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.
基金financial support from the National Natural Science Foundation of China (U1510120, 91645110)the Project of Introducing Overseas Intelligence High Education of China (2017-2018)+1 种基金the Graduate Thesis Innovation Foundation of Donghua University (EG2016034)the College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University
文摘There has been a continuous need for high active, excellently durable and low-cost electrocatalysts for rechargeable zinc-air batteries. Among many low-cost metal based candidates, transition metal oxides with the CNTs composite have gained increasing attention. In this paper, the 3-D hollow sphere MnO_2 nanotube-supported Co_3O_4 nanoparticles and its carbon nanotubes hybrid material(Co_3 O_4/MnO_2-CNTs) have been synthesized via a simple co-precipitation method combined with post-heat treatment. The morphology and composition of the catalysts are thoroughly analyzed through SEM, TEM, TEM-mapping, XRD, EDX and XPS. In comparison with the commercial 20% Pt/C, Co_3O_4/MnO_2,bare MnO_2 nanotubes and CNTs, the hybrid Co_3O_4/MnO_2-CNTs-350 exhibits perfect bi-functional catalytic activity toward oxygen reduction reaction and oxygen evolution reaction under alkaline condition(0.1 M KOH). Therefore, high cell performances are achieved which result in an appropriate open circuit voltage(~1.47 V),a high discharge peak power density(340 mW cm^(-2)) and a large specific capacity(775 mAh g^(-1) at 10 mA cm^(-2)) for the primary Zn-air battery, a small charge-discharge voltage gap and a high cycle-life(504 cycles at 10 mA cm^(-2) with 10 min per cycle) for the rechargeable Zn-air battery. In particular, the simple synthesis method is suitable for a large-scale production of this bifunctional material due to a green, cost effective and readily available process.
基金financial support from the Program for New Century Excellent Talents in University(NCET-040270)。
文摘Two kinds of bi-functional transition metal doped mesoporous materials(Fe-HMS and Fe-MCM-41) are prepared using one-step hydrothermal method and then treated with hydrochloric acid ethanol solution.The N2 adsorption and HRTEM results show that both of Fe-HMS and Fe-MCM-41 possess mesoporous structure. The UV–vis results suggest that the Fe species are mainly located within the framework. The basicity of as-prepared samples was studied by temperature programmed desorption using CO2 as probe molecule(CO2-TPD). The catalytic performance of Fe-HMS and Fe-MCM-41 in CO2 cycloaddition largely depends on the amount of the accessible basic sites. The acid–base active sites, framework Fe and PDDA species cooperatively catalyze the CO2 cycloaddition for the production of cyclic carbonates under the condition without any co-catalyst. The conversion of epichlorohydrin(ECH) is 97.4% and the selectivity of chloropropene carbonate is 92.9% under optimal conditions. The approximate rate constant of cycloaddition reaction of CO2 with ECH under optimum reaction temperature is calculated. It is worth noting that the Fe-HMS material shows superior reusability than Fe-MCM-41. In addition, this work provides a facile way on the synthesis of bi-functional acid–base heterogeneous catalyst with outstanding catalytic performance for the fixation of CO2.
基金The financial support of European Contract 299732 UNIfHY(UNIQUE For HYdrogen production, funded by FCH-JU under the topic SP1-JTI-FCH.2011.2.3: Biomass-toHydrogen thermal conversion processes)
文摘Sorption enhanced steam methane reforming(SE-SMR) was performed to maximize hydrogen production and contemporary remove COfrom the product stream using bi-functional sorbent-catalyst compounds.Samples were tested at two different scales: micro and laboratory. The CaO amount varied in the CaO-CaAlOsorbent system synthesized by wet mixing(CaO content of 100 wt%, 56 wt%, 30 wt%, or 0 wt% and balance of CaAlO) which were upgraded to bi-functional compounds by impregnation of 3 wt% of Ni. Nitrogen adsorption(BET/BJH), X-Ray Diffraction(XRD), Temperature-Programmed Reduction(TPR) and Scanning and Transmission Electronic Microscopy(SEM and TEM, respectively) analyses were performed to characterize structural and textural properties and reducibility of the bi-functional materials and evaluate their catalytic behavior. A fixed sorbent composition CaO-CaAlO(56 wt% of CaO and CaAlObalance), was chosen to study the effect of different weight hourly space times(WHST) and CHstream compositions in SE-SMR activity. Impregnated mayenite at both micro and laboratory scales showed stable Hcontent of almost 74%, with CHconversion of 72% similarly to the values reported by the sample containing 30 wt% of CaO in the post-breakthrough.Sample with 30 wt% of CaO showed promisingly behavior, enhancing Hcontent up to almost 94.5%.When the sorption enhanced reaction is performed roughly 89% of CHconversion is achieved, and after the pre-breakthrough, the catalyst worked at the thermodynamic level. During cycling sorption/regeneration experiments, even if COremoval efficiency slightly decreases, CHconversion and Hyield remain stable.
基金supported by the National Natural Science Foundation of China under(No.21878158,2182880,51678291)Jiangsu Natural Science Foundation for Distinguished Young Scholars(No.BK20170043)+3 种基金the National Key R&D Program of China(2018YFB1502903)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)China Postdoctoral Science Foundation(2019M660112)the Jiangsu Postdoctoral Science Funding Project
文摘One of the critical challenges that limit broad commercialization of proton exchange membrane fuel cells(PEMFC)is to reduce the usage of Pt while maintaining high power output and sufficient durability.Herein,a novel bifunctional layer consisting of vertically aligned carbon nanotubes(VACNTs)and nanoparticles of Pt-Co catalysts(Pt-Co/VACNTs)is reported for highperformance PEMFCs.Readily prepared by a two-step process,the Pt-Co/VACNTs layer with a hydrophilic catalyst-loaded side and a hydrophobic gas diffusion side enables a PTFE-free electrode structure with fully exposed catalyst active sites and superior gas–water diffusion capability.When tested in a PEMFC,the bi-functional Pt-Co/VACNTs layer with ultralow Pt loading(~65μgcathodecm-2)demonstrates a power density of 19.5 kW gPt cathode-1 at 0.6 V,more than seven times that of a cell with commercial Pt/C catalyst(2.7 kW gPt cathode-1 at 0.6 V)at a loading of 400μgcathodecm-2 tested under similar conditions.This remarkable design of VACNTs-based catalyst with dual functionalities enables much lower Pt loading,faster mass transport,and higher electrochemical performance and stability.Further,the preparation procedure can be easily scaled up for low-cost fabrication and commercialization.
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.
文摘A novel bi-functional photorefractive acrylate polymer with pendant carbazolyl groups and azo derivatives as side chains was synthesized. Photorefractive experiments showed a high two-beam coupling gain coefficient of 93 cm(-1), diffraction efficiency of 12% and electro-optic coefficient of 26 pm/V were obtained.
基金Funded by the National Natural Science Foundation of China (No.50802069)the Natural Science Foundation of Wuhan University of Tech-nology (471-38650378)
文摘We report an organic/inorganic hybridized nanocomposite consisting of a bi-functional poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl serves as a polymeric charge-transporting and second-order nonliner optical matrix, and CdS nanoparticles as photosensitizers to manifest photorefractive (PR) effect. The unpoled PVNPAK film exhibits a second harmonic generation (SHG) coefficient of 4.7 pm/V due to the possibility of self-alignment of the azo chromophore. Significant enhancement of photoconductivity is noticed with the increase of CdS nanoparticles concentration. The photorefractive property of the polymer nanocomposites were determined by two-beam coupling (TBC) experiment. The TBC gain and diffraction efficiency of 11.89 cm-1 and 3.2% were obtained for PVNPAK/CdS at zero electrical field.
基金supported by the National Natural Science Foundation of China(52272194)Liaoning Revitalization Talents Program(XLYC2007155)。
文摘Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy.