High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion te...High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies.Herein,we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction(OER)for alkaline electrolysis,which yields current density of 10 mA cm^(-2)at an overpotential of 215 mV in 0.1 M KOH electrolyte.The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity.Raman spectra revealed that the catalyst underwent structure reconstruction during OER,evolving into oxyhydroxide,which was the active site proceeding OER in alkaline electrolyte.In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst.This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability.These findings provide promising strategies for the rational design of nonnoble metal OER catalysts.展开更多
LaFeO3 perovskite supported Ni and Ni-Fe catalysts were prepared and applied to methanation reaction of syngas. Two preparation methods were employed. One was one-step citrate complexing method, and the other was a tw...LaFeO3 perovskite supported Ni and Ni-Fe catalysts were prepared and applied to methanation reaction of syngas. Two preparation methods were employed. One was one-step citrate complexing method, and the other was a two step method using citrate complexing method to produce LaFeO3 and followed by loading nickel oxide on it with impregnation. The structure evolution of the sample as prepared was investigated by XRD, TPR and TEM techniques. For the former, the chemical composites of the calcined sample are NiO-Fe2O3/LaFe1-xNixO3. After reduction and reaction of CO methanation, its composites convert to Fe-Ni@Ni/LaFeO3-La2O2CO3, in which Fe-Ni@Ni is metal particles in nano-size composed of nickel core and Fe-Ni alloy shell. For the latter, the chemical composites of the calcined sample are NiO/LaFeO3; and after reduction and reaction of CO methanation, its chemical composites change to Ni/LaFeO3. Ni/LaFeO3 catalyst is a little more active, while Fe-Ni@Ni/LaFeO3-La2O2CO3 is much more stable and shows very good resistance to carbon deposition. In this work it is aimed to show that the structure and composites of the catalysts can be tailored using perovskite-type oxide as precursor with different preparing method or preparing condition. Therefore, it is a promising route to prepare supported bi-metal catalysts in nano-size for a lot of metals with desired catalytic performances.展开更多
Cu-Co bi-metal catalysts derived from CuO/LaCoO3 perovskite structure were prepared by one-step citrate complexing method, and the structure evolution reaction from CuO/LaCoO3 to Cu-Co2C/La202CO3 under 1-12 pretreatme...Cu-Co bi-metal catalysts derived from CuO/LaCoO3 perovskite structure were prepared by one-step citrate complexing method, and the structure evolution reaction from CuO/LaCoO3 to Cu-Co2C/La202CO3 under 1-12 pretreatment was investigated by techniques of XRD, TPR and TEM. The results suggest that a much higher dispersion of copper significantly enhanced the reduction of cobalt, and a stronger interaction between copper and cobalt ions in LaCoO3 particles led to the formation of bi-metallic Cu-Co particles in the reduced catalysts and the enrichment of Co on the surface of bimetallic particles. The prepared catalysts were highly active and selective for the alcohol synthesis from syngas due to the presence of copper-modified C02C species.展开更多
Two kinds of bi-metal composite parts (Sn-15%Pb and Pb-22%Sn bi-metal system, and Al-7%Si and SiCp/6061 MMC bi-metal system) were prepared by the strain-induced melt activated thixo-forging. The interfaces of the bi...Two kinds of bi-metal composite parts (Sn-15%Pb and Pb-22%Sn bi-metal system, and Al-7%Si and SiCp/6061 MMC bi-metal system) were prepared by the strain-induced melt activated thixo-forging. The interfaces of the bi-metal composites were observed by OM and SEM. The observations show that the semisolid metals keep independence during thixo-forging. The solid phases in the semisolid slurries maintain their original morphologies after thixo-forging. The liquid phases near the interface mix together and form a thin layer. The interfaces are bonded firmly with the metallurgical bonding. No oxide layers are found at the interfaces. Strengths of the interfaces were investigated by the micro-hardness test. The experimental results show that the composite interfaces have high strength. However, the agglomerated enhancing particles cause fine defect on the interface of the Al-7%Si and SiCr/6061 MMC bi-metal composite.展开更多
An orthogonal experiment scheme was designed to investigate the effects of the Cu content,compaction pressure,and sintering temperature on the microstructures and mechanical and thermal properties of(30−50)wt.%Cu/Inva...An orthogonal experiment scheme was designed to investigate the effects of the Cu content,compaction pressure,and sintering temperature on the microstructures and mechanical and thermal properties of(30−50)wt.%Cu/Invar bi-metal matrix composites fabricated via spark plasma sintering(SPS).The results indicated that as the Cu content increased from 30 to 50 wt.%,a continuous Cu network gradually appeared,and the density,thermal conductivity(TC)and coefficient of thermal expansion of the composites noticeably increased,but the tensile strength decreased.The increase in the sintering temperature promoted the Cu/Invar interface diffusion,leading to a reduction in the TC but an enhancement in the tensile strength of the composites.The compaction pressure comprehensively affected the thermal properties of the composites.The 50wt.%Cu/Invar composite sintered at 700℃ and 60 MPa had the highest TC(90.7 W/(m·K)),which was significantly higher than the TCs obtained for most of the previously reported Cu/Invar composites.展开更多
Bi-metal material consisting of spray-formed Al-22Si and ZL104 is a suitable candidate for applications in internal combustion engines. This research investigated the effects of surface treatment and appropriate gatin...Bi-metal material consisting of spray-formed Al-22Si and ZL104 is a suitable candidate for applications in internal combustion engines. This research investigated the effects of surface treatment and appropriate gating system on the microstructures and mechanical properties in evaluating the optimal strategy for producing high quality bi-metal materials. The bi-metal materials were prepared using ZL104 gravity casting by different pouring types around the spray-formed AI-22Si with varied surface treatments. The wettability between AI-22Si and ZL104 was significantly improved when Zn coating was used to remove the natural oxide layer. This research also obtained the improved interfacial microstructures and interracial bonding strength for materials when applying the appropriate pouring method. The hardness profiles of AI-22Si/ZL104 bi-metal were consistent with the observed microstructures. The average tensile strength of the bi-metal material with zinc coating is -42.3 MPa, which is much higher than that with oxide film at -10 MPa. The process presented is a promising and effective approach for developing materials in the automotive industry.展开更多
In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechani...In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube.展开更多
The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission...The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission.Lunar lava tubes are special underground caves formed by volcanic eruptions and are considered as ideal natural shelters and scientific laboratories for lunar base construction.This paper begins with an in-depth overview of the geological origins,exploration history,and distribution locations of lunar lava tubes.Subsequently,it delves into the presentation of four distinctive advantages and typical concepts for constructing bases within lava tubes,summarizing the ground-based attempts made thus far in lunar lava tube base construction.Field studies conducted on a lava tube in Hainan revealed rock compositions similar to those found during the Apollo missions and clear lava tube structures,making it a promising analog site.Lastly,the challenges and opportunities encountered in the field of geotechnical engineering regarding the establishment of lunar lava tube bases are discussed,encompassing cave exploration technologies,in-situ testing methods,geomechanical properties under lunar extreme environments,base design and structural stability assessment,excavation and reinforcement techniques,and simulated Earth-based lava tube base.展开更多
In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to c...In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.展开更多
BACKGROUND Since its description in 1790 by Hunter,the nasogastric tube(NGT)is commonly used in any healthcare setting for alleviating gastrointestinal symptoms or enteral feeding.However,the risks associated with its...BACKGROUND Since its description in 1790 by Hunter,the nasogastric tube(NGT)is commonly used in any healthcare setting for alleviating gastrointestinal symptoms or enteral feeding.However,the risks associated with its placement are often underes-timated.Upper airway obstruction with a NGT is an uncommon but potentially life-threatening complication.NGT syndrome is characterized by the presence of an NGT,throat pain and vocal cord(VC)paralysis,usually bilateral.It is poten-tially life–threatening,and early diagnosis is the key to the prevention of fatal upper airway obstruction.However,fewer cases may have been reported than might have occurred,primarily due to the clinicians'unawareness.The lack of specific signs and symptoms and the inability to prove temporal relation with NGT insertion has made diagnosing the syndrome quite challenging.AIM To review and collate the data from the published case reports and case series to understand the possible risk factors,early warning signs and symptoms for timely detection to prevent the manifestation of the complete syndrome with life-threatening airway obstruction.METHODS We conducted a systematic search for this meta-summary from the database of PubMed,EMBASE,Reference Citation Analysis(https://www.referencecitation-analysis.com/)and Google scholar,from all the past studies till August 2023.The search terms included major MESH terms"Nasogastric tube","Intubation,Gastrointestinal","Vocal Cord Paralysis",and“Syndrome”.All the case reports and case series were evaluated,and the data were extracted for patient demographics,clinical symptomatology,diagnostic and therapeutic interventions,clinical course and outcomes.A datasheet for evaluation was further prepared.RESULTS Twenty-seven cases,from five case series and 13 case reports,of NGT syndrome were retrieved from our search.There was male predominance(17,62.96%),and age at presentation ranged from 28 to 86 years.Ten patients had diabetes mellitus(37.04%),and nine were hypertensive(33.33%).Only three(11.11%)patients were reported to be immunocompromised.The median time for developing symptoms after NGT insertion was 14.5 d(interquartile range 6.25-33.75 d).The most commonly reported reason for NGT insertion was acute stroke(10,37.01%)and the most commonly reported symptoms were stridor or wheezing 17(62.96%).In 77.78%of cases,bilateral VC were affected.The only treatment instituted in most patients(77.78%)was removing the NG tube.Most patients(62.96%)required tracheostomy for airway protection.But 8 of the 23 survivors recovered within five weeks and could be decannulated.Three patients were reported to have died.CONCLUSION NGT syndrome is an uncommon clinical complication of a very common clinical procedure.However,an under-reporting is possible because of misdiagnosis or lack of awareness among clinicians.Patients in early stages and with mild symptoms may be missed.Further,high variability in the presentation timing after NGT insertion makes diagnosis challenging.Early diagnosis and prompt removal of NGT may suffice in most patients,but a significant proportion of patients presenting with respiratory compromise may require tracheostomy for airway protection.展开更多
The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing t...The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.展开更多
Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with pre...Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.展开更多
Thin-walled structures are widely used in cars due to their lightweight construction and energy-absorbing properties.However,issues such as high initial stress and lowenergy-absorbing efficiency arise.This study propo...Thin-walled structures are widely used in cars due to their lightweight construction and energy-absorbing properties.However,issues such as high initial stress and lowenergy-absorbing efficiency arise.This study proposes a novel energy-absorbing structure inwhich a straight tube is combinedwith a conical tube and a bamboo-inspired bulkhead structure is introduced.This configuration allows the conical tube to flip outward first and then fold together with the straight tube.This deformation mode absorbs more energy and less peak force than the conical tube sinking and flipping inward.Through finite element numerical simulation,the specific energy absorption capacity of the structure is increased by 26%compared to that of a regular circular cross-section tube.Finally,the impact resistance of the bionic straight tapered tube structure is further improved through multi-objective optimization,promoting the engineering application and lightweight design of hybrid cross-section tubes.展开更多
This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1...This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1.00 m in width.The related reflector is made of lined sheets of aluminum,and the tubes are made of stainless steel used for the absorption of heat.They have an outer diameter of 0.051 m and a wall thickness of 0.002 m.Water,used as a heat transfer fluid(HTF),flows through the absorber tube at a mass flow rate of 0.7 kg/s.The dimensions of cylindrical turbulators are 0.04 m in length and 0.047 m in diameter.Simulations are performed using the ANSYS Fluent 2020 R2 software.The PTC performance is evaluated by comparing the experimental and numerical outcomes,namely,the outlet temperature,useful heat,and thermal efficiency for a modified tube(MT)(tube with novel cylindrical turbulators)and a plain tube(PT)(tube without novel cylindrical turbulators).According to the results,the experimental outlet temperatures recorded 63.2°C and 50.5°C for the MT and PT,respectively.The heat gain reaches 1137.5 Win the MT and 685.8 Win the PT.Compared to the PT collector,the PTC exhibited a(1.64 times)higher efficiency.展开更多
Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their mac...Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.展开更多
In this paper, a novel efficient energy absorber with free inversion of a metal foam-filled circular tube(MFFCT) is designed, and the axial compressive behavior of the MFFCT under free inversion is studied analyticall...In this paper, a novel efficient energy absorber with free inversion of a metal foam-filled circular tube(MFFCT) is designed, and the axial compressive behavior of the MFFCT under free inversion is studied analytically and numerically. The theoretical analysis reveals that the energy is mainly dissipated through the radial bending of the metal circular tube, the circumferential expansion of the metal circular tube, and the metal filled-foam compression. The principle of energy conservation is used to derive the theoretical formula for the minimum compressive force of the MFFCT over free inversion under axial loading. Furthermore, the free inversion deformation characteristics of the MFFCT are analyzed numerically. The theoretical steady values are found to be in good agreement with the results of the finite element(FE) analysis. The effects of the average diameter of the metal tube, the wall thickness of the metal tube, and the filled-foam strength on the free inversion deformation of the MFFCT are considered. It is observed that in the steady deformation stage, the load-carrying and energy-absorbing capacities of the MFFCT increase with the increase in the average diameter of the metal tube, the wall thickness of the metal tube, or the filled-foam strength. The specific energy absorption(SEA) of free inversion of the MFFCT is significantly higher than that of the metal tube alone.展开更多
Background: Sudden sensorineural hearing loss(SSNHL) is a prevalent emergency in ear, nose, and throat practice. Previous studies have demonstrated that intratympanic steroid therapy(IST) can serve as a salvage treatm...Background: Sudden sensorineural hearing loss(SSNHL) is a prevalent emergency in ear, nose, and throat practice. Previous studies have demonstrated that intratympanic steroid therapy(IST) can serve as a salvage treatment for SSNHL after the failure of systemic steroid therapy(SST).Objective: This study aimed to analyze the efficacy of modified IST involving the insertion of a tympanic tube and gelfoam as a salvage treatment for patients with SSNHL, and to explore its associated factors.Methods: Totally, 74 patients who were aged 22–81 years with SSNHL were enrolled and allocated to either the control group(n = 25) or the treatment group(n = 49) based on their treatment modalities. All patients received SST lasting for at least 7 days. Subsequently, patients in the treatment group, after SST failure, underwent IST twice a week for 2–6 weeks, while the control group did not. Efficacy was assessed by the improvement in pure tone average at the affected frequency at the beginning and end of IST.Results: Hearing improvement in all patients after IST in the treatment group was 9.71 ± 14.84 dB, with significant improvement at affected frequencies(250-8000 Hz) compared with the control group(P < 0.05). The findings indicated the duration from the onset of SSNHL to the beginning of IST as an independent factor for pure tone average improvement after treatment(P = 0.002), whereas age, duration of SST, and time of IST were not(P > 0.05).Conclusion: The modified IST was demonstrated to be a safe and effective method as a salvage treatment for SSNHL. This study explored the efficacy of a modified IST approach, incorporating the utilization of tympanic tubes and gelfoam as key components. The findings underscore the advantages of gelfoam as a strategic drug carrier placed in the round window niche. By minimizing drug loss, extending action time, and increasing perilymph concentration, gelfoam enhances the therapeutic impact of IST, contributing to improved hearing outcomes in patients with SSNHL.展开更多
Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic for...Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic forming process.In the present study,the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed.In particular,the orthogonal experimental design(OED)and central composite design(CCD)methods have been used.Through the range analysis and variance analysis of the experimental data,the influence degree of wire diameter(WD)and discharge energy(DE)on the forming quality was determined.Multiple regression analysis was performed using the response surface methodology.A prediction model for the attaching-die state coefficient was established accordingly.The following optimal arrangement of parameters was obtained(WD=0.759 mm,DE=2.926 kJ).The attaching-die state coefficient reached the peak value of 0.001.Better optimized wire diameter and discharge energy for a better attaching-die state could be screened by CCD compared with OED.The response surface method in CCD was more suitable for the design and optimization of the considered process parameters.展开更多
The radiant tube burner was modeled and analyzed by the numerical simulation method to investigate the influence factors and rules of NO_(x) emissions in a W-type radiant tube.These factors,which include air preheatin...The radiant tube burner was modeled and analyzed by the numerical simulation method to investigate the influence factors and rules of NO_(x) emissions in a W-type radiant tube.These factors,which include air preheating temperature,excess air coefficient,and fuel gas composition,were modified to study their effects on NO_(x) emissions under varying working conditions.Simulation results were compared with the theoretical calculation value based on chemical reaction equilibrium theory and the onsite experimental value to verify the simulation accuracy.The results show that NO_(x) emissions rise with increasing air preheating temperatures.NO_(x) production increases to an extreme value and then decreases during the oxygen-poor to oxygen-enriched process with the rise of the excess air coefficient.Enhancing the proportion of coke oven gas in the fuel gas raises the combustion temperature as well as the NO_(x) discharge.Both the thermal efficiency and NO_(x) emissions should be balanced.Therefore,the recommended values based on the simulation results are as follows:the air preheating temperature should not exceed 400℃,the excess air coefficient should be between 1.1 and 1.2,and the volume fraction of the coke oven gas should not exceed 30%.展开更多
基金the staff at Beamline (BL08U1-A and BL11B)of the Shanghai Synchrotron Radiation Facility (SSRF)the support from the National Key Research&Development Program of China (2022YFB3803700)+2 种基金the National Natural Science Foundation of China (52171186)the support through the Overseas Outstanding Youth Fund and Shanghai Pujiang Talent Project (21PJ1408500)the financial support from the Center of Hydrogen Science,Shanghai Jiao Tong University。
文摘High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies.Herein,we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction(OER)for alkaline electrolysis,which yields current density of 10 mA cm^(-2)at an overpotential of 215 mV in 0.1 M KOH electrolyte.The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity.Raman spectra revealed that the catalyst underwent structure reconstruction during OER,evolving into oxyhydroxide,which was the active site proceeding OER in alkaline electrolyte.In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst.This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability.These findings provide promising strategies for the rational design of nonnoble metal OER catalysts.
基金supported by the Financial support from the NSF of China(21066007)the NSF of Tianjin China(10JCZDJC23800)the NSF of Mongolia China(2009BS0203)
文摘LaFeO3 perovskite supported Ni and Ni-Fe catalysts were prepared and applied to methanation reaction of syngas. Two preparation methods were employed. One was one-step citrate complexing method, and the other was a two step method using citrate complexing method to produce LaFeO3 and followed by loading nickel oxide on it with impregnation. The structure evolution of the sample as prepared was investigated by XRD, TPR and TEM techniques. For the former, the chemical composites of the calcined sample are NiO-Fe2O3/LaFe1-xNixO3. After reduction and reaction of CO methanation, its composites convert to Fe-Ni@Ni/LaFeO3-La2O2CO3, in which Fe-Ni@Ni is metal particles in nano-size composed of nickel core and Fe-Ni alloy shell. For the latter, the chemical composites of the calcined sample are NiO/LaFeO3; and after reduction and reaction of CO methanation, its chemical composites change to Ni/LaFeO3. Ni/LaFeO3 catalyst is a little more active, while Fe-Ni@Ni/LaFeO3-La2O2CO3 is much more stable and shows very good resistance to carbon deposition. In this work it is aimed to show that the structure and composites of the catalysts can be tailored using perovskite-type oxide as precursor with different preparing method or preparing condition. Therefore, it is a promising route to prepare supported bi-metal catalysts in nano-size for a lot of metals with desired catalytic performances.
基金supported by the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Provincethe Ph.D.Programs Foundation of Liaocheng University(No.31805)the NSF of China(21263011,21376170)
文摘Cu-Co bi-metal catalysts derived from CuO/LaCoO3 perovskite structure were prepared by one-step citrate complexing method, and the structure evolution reaction from CuO/LaCoO3 to Cu-Co2C/La202CO3 under 1-12 pretreatment was investigated by techniques of XRD, TPR and TEM. The results suggest that a much higher dispersion of copper significantly enhanced the reduction of cobalt, and a stronger interaction between copper and cobalt ions in LaCoO3 particles led to the formation of bi-metallic Cu-Co particles in the reduced catalysts and the enrichment of Co on the surface of bimetallic particles. The prepared catalysts were highly active and selective for the alcohol synthesis from syngas due to the presence of copper-modified C02C species.
基金Project(1343-71333000469) supported by the Funding of Graduate Student Training of Central South University,China
文摘Two kinds of bi-metal composite parts (Sn-15%Pb and Pb-22%Sn bi-metal system, and Al-7%Si and SiCp/6061 MMC bi-metal system) were prepared by the strain-induced melt activated thixo-forging. The interfaces of the bi-metal composites were observed by OM and SEM. The observations show that the semisolid metals keep independence during thixo-forging. The solid phases in the semisolid slurries maintain their original morphologies after thixo-forging. The liquid phases near the interface mix together and form a thin layer. The interfaces are bonded firmly with the metallurgical bonding. No oxide layers are found at the interfaces. Strengths of the interfaces were investigated by the micro-hardness test. The experimental results show that the composite interfaces have high strength. However, the agglomerated enhancing particles cause fine defect on the interface of the Al-7%Si and SiCr/6061 MMC bi-metal composite.
基金the International Science&Technology Cooperation Program of China(No.2014DFA50860).
文摘An orthogonal experiment scheme was designed to investigate the effects of the Cu content,compaction pressure,and sintering temperature on the microstructures and mechanical and thermal properties of(30−50)wt.%Cu/Invar bi-metal matrix composites fabricated via spark plasma sintering(SPS).The results indicated that as the Cu content increased from 30 to 50 wt.%,a continuous Cu network gradually appeared,and the density,thermal conductivity(TC)and coefficient of thermal expansion of the composites noticeably increased,but the tensile strength decreased.The increase in the sintering temperature promoted the Cu/Invar interface diffusion,leading to a reduction in the TC but an enhancement in the tensile strength of the composites.The compaction pressure comprehensively affected the thermal properties of the composites.The 50wt.%Cu/Invar composite sintered at 700℃ and 60 MPa had the highest TC(90.7 W/(m·K)),which was significantly higher than the TCs obtained for most of the previously reported Cu/Invar composites.
基金financially supported by the National Natural Science Foundation of China(No.51375110)
文摘Bi-metal material consisting of spray-formed Al-22Si and ZL104 is a suitable candidate for applications in internal combustion engines. This research investigated the effects of surface treatment and appropriate gating system on the microstructures and mechanical properties in evaluating the optimal strategy for producing high quality bi-metal materials. The bi-metal materials were prepared using ZL104 gravity casting by different pouring types around the spray-formed AI-22Si with varied surface treatments. The wettability between AI-22Si and ZL104 was significantly improved when Zn coating was used to remove the natural oxide layer. This research also obtained the improved interfacial microstructures and interracial bonding strength for materials when applying the appropriate pouring method. The hardness profiles of AI-22Si/ZL104 bi-metal were consistent with the observed microstructures. The average tensile strength of the bi-metal material with zinc coating is -42.3 MPa, which is much higher than that with oxide film at -10 MPa. The process presented is a promising and effective approach for developing materials in the automotive industry.
基金supported by the National Natural Science Foundation of China(Nos.51974082,51901037)State Key Laboratory of Baiyunobo Rare Earth Resource Research and Comprehensive Utilization(No.2021H2279)Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project 2.0 of China,No.BP0719037).
文摘In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube.
基金supported by the National Natural Science Foundation of China(Nos.52125903 and 52339001).
文摘The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission.Lunar lava tubes are special underground caves formed by volcanic eruptions and are considered as ideal natural shelters and scientific laboratories for lunar base construction.This paper begins with an in-depth overview of the geological origins,exploration history,and distribution locations of lunar lava tubes.Subsequently,it delves into the presentation of four distinctive advantages and typical concepts for constructing bases within lava tubes,summarizing the ground-based attempts made thus far in lunar lava tube base construction.Field studies conducted on a lava tube in Hainan revealed rock compositions similar to those found during the Apollo missions and clear lava tube structures,making it a promising analog site.Lastly,the challenges and opportunities encountered in the field of geotechnical engineering regarding the establishment of lunar lava tube bases are discussed,encompassing cave exploration technologies,in-situ testing methods,geomechanical properties under lunar extreme environments,base design and structural stability assessment,excavation and reinforcement techniques,and simulated Earth-based lava tube base.
基金the grants from the National Natural Science Foundation of China(Nos.52078152 and 12002095)Guangzhou Government-University Union Fund(No.202201020532)。
文摘In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.
文摘BACKGROUND Since its description in 1790 by Hunter,the nasogastric tube(NGT)is commonly used in any healthcare setting for alleviating gastrointestinal symptoms or enteral feeding.However,the risks associated with its placement are often underes-timated.Upper airway obstruction with a NGT is an uncommon but potentially life-threatening complication.NGT syndrome is characterized by the presence of an NGT,throat pain and vocal cord(VC)paralysis,usually bilateral.It is poten-tially life–threatening,and early diagnosis is the key to the prevention of fatal upper airway obstruction.However,fewer cases may have been reported than might have occurred,primarily due to the clinicians'unawareness.The lack of specific signs and symptoms and the inability to prove temporal relation with NGT insertion has made diagnosing the syndrome quite challenging.AIM To review and collate the data from the published case reports and case series to understand the possible risk factors,early warning signs and symptoms for timely detection to prevent the manifestation of the complete syndrome with life-threatening airway obstruction.METHODS We conducted a systematic search for this meta-summary from the database of PubMed,EMBASE,Reference Citation Analysis(https://www.referencecitation-analysis.com/)and Google scholar,from all the past studies till August 2023.The search terms included major MESH terms"Nasogastric tube","Intubation,Gastrointestinal","Vocal Cord Paralysis",and“Syndrome”.All the case reports and case series were evaluated,and the data were extracted for patient demographics,clinical symptomatology,diagnostic and therapeutic interventions,clinical course and outcomes.A datasheet for evaluation was further prepared.RESULTS Twenty-seven cases,from five case series and 13 case reports,of NGT syndrome were retrieved from our search.There was male predominance(17,62.96%),and age at presentation ranged from 28 to 86 years.Ten patients had diabetes mellitus(37.04%),and nine were hypertensive(33.33%).Only three(11.11%)patients were reported to be immunocompromised.The median time for developing symptoms after NGT insertion was 14.5 d(interquartile range 6.25-33.75 d).The most commonly reported reason for NGT insertion was acute stroke(10,37.01%)and the most commonly reported symptoms were stridor or wheezing 17(62.96%).In 77.78%of cases,bilateral VC were affected.The only treatment instituted in most patients(77.78%)was removing the NG tube.Most patients(62.96%)required tracheostomy for airway protection.But 8 of the 23 survivors recovered within five weeks and could be decannulated.Three patients were reported to have died.CONCLUSION NGT syndrome is an uncommon clinical complication of a very common clinical procedure.However,an under-reporting is possible because of misdiagnosis or lack of awareness among clinicians.Patients in early stages and with mild symptoms may be missed.Further,high variability in the presentation timing after NGT insertion makes diagnosis challenging.Early diagnosis and prompt removal of NGT may suffice in most patients,but a significant proportion of patients presenting with respiratory compromise may require tracheostomy for airway protection.
基金financially supported by the National Key R&D Program of China(Grant No.2020YFA0711802)the Wuhan Science and Technology Bureau of China(Grant No.2023020201010081)the National Nature Science Foundation of China(Grant No.U22A20239).
文摘The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.
基金supported by the National Natural Science Foundation of China(91963202,52072372,52372241,52232007,12325203)HFIPS Director’s Fund(BJPY2023A07,YZJJ-GGZX-2022-01).
文摘Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.
文摘Thin-walled structures are widely used in cars due to their lightweight construction and energy-absorbing properties.However,issues such as high initial stress and lowenergy-absorbing efficiency arise.This study proposes a novel energy-absorbing structure inwhich a straight tube is combinedwith a conical tube and a bamboo-inspired bulkhead structure is introduced.This configuration allows the conical tube to flip outward first and then fold together with the straight tube.This deformation mode absorbs more energy and less peak force than the conical tube sinking and flipping inward.Through finite element numerical simulation,the specific energy absorption capacity of the structure is increased by 26%compared to that of a regular circular cross-section tube.Finally,the impact resistance of the bionic straight tapered tube structure is further improved through multi-objective optimization,promoting the engineering application and lightweight design of hybrid cross-section tubes.
文摘This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1.00 m in width.The related reflector is made of lined sheets of aluminum,and the tubes are made of stainless steel used for the absorption of heat.They have an outer diameter of 0.051 m and a wall thickness of 0.002 m.Water,used as a heat transfer fluid(HTF),flows through the absorber tube at a mass flow rate of 0.7 kg/s.The dimensions of cylindrical turbulators are 0.04 m in length and 0.047 m in diameter.Simulations are performed using the ANSYS Fluent 2020 R2 software.The PTC performance is evaluated by comparing the experimental and numerical outcomes,namely,the outlet temperature,useful heat,and thermal efficiency for a modified tube(MT)(tube with novel cylindrical turbulators)and a plain tube(PT)(tube without novel cylindrical turbulators).According to the results,the experimental outlet temperatures recorded 63.2°C and 50.5°C for the MT and PT,respectively.The heat gain reaches 1137.5 Win the MT and 685.8 Win the PT.Compared to the PT collector,the PTC exhibited a(1.64 times)higher efficiency.
基金Project(ZCLTGS24B0101)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(Y202250501)supported by Scientific Research Fund of Zhejiang Provincial Education Department,ChinaProject supported by SRT Research Project of Jiaxing Nanhu University,China。
文摘Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.
基金Project supported by the National Natural Science Foundation of China (Nos. 12272290 and11872291)the State Key Laboratory of Automotive Safety and Energy of China (No. KFY2202)。
文摘In this paper, a novel efficient energy absorber with free inversion of a metal foam-filled circular tube(MFFCT) is designed, and the axial compressive behavior of the MFFCT under free inversion is studied analytically and numerically. The theoretical analysis reveals that the energy is mainly dissipated through the radial bending of the metal circular tube, the circumferential expansion of the metal circular tube, and the metal filled-foam compression. The principle of energy conservation is used to derive the theoretical formula for the minimum compressive force of the MFFCT over free inversion under axial loading. Furthermore, the free inversion deformation characteristics of the MFFCT are analyzed numerically. The theoretical steady values are found to be in good agreement with the results of the finite element(FE) analysis. The effects of the average diameter of the metal tube, the wall thickness of the metal tube, and the filled-foam strength on the free inversion deformation of the MFFCT are considered. It is observed that in the steady deformation stage, the load-carrying and energy-absorbing capacities of the MFFCT increase with the increase in the average diameter of the metal tube, the wall thickness of the metal tube, or the filled-foam strength. The specific energy absorption(SEA) of free inversion of the MFFCT is significantly higher than that of the metal tube alone.
文摘Background: Sudden sensorineural hearing loss(SSNHL) is a prevalent emergency in ear, nose, and throat practice. Previous studies have demonstrated that intratympanic steroid therapy(IST) can serve as a salvage treatment for SSNHL after the failure of systemic steroid therapy(SST).Objective: This study aimed to analyze the efficacy of modified IST involving the insertion of a tympanic tube and gelfoam as a salvage treatment for patients with SSNHL, and to explore its associated factors.Methods: Totally, 74 patients who were aged 22–81 years with SSNHL were enrolled and allocated to either the control group(n = 25) or the treatment group(n = 49) based on their treatment modalities. All patients received SST lasting for at least 7 days. Subsequently, patients in the treatment group, after SST failure, underwent IST twice a week for 2–6 weeks, while the control group did not. Efficacy was assessed by the improvement in pure tone average at the affected frequency at the beginning and end of IST.Results: Hearing improvement in all patients after IST in the treatment group was 9.71 ± 14.84 dB, with significant improvement at affected frequencies(250-8000 Hz) compared with the control group(P < 0.05). The findings indicated the duration from the onset of SSNHL to the beginning of IST as an independent factor for pure tone average improvement after treatment(P = 0.002), whereas age, duration of SST, and time of IST were not(P > 0.05).Conclusion: The modified IST was demonstrated to be a safe and effective method as a salvage treatment for SSNHL. This study explored the efficacy of a modified IST approach, incorporating the utilization of tympanic tubes and gelfoam as key components. The findings underscore the advantages of gelfoam as a strategic drug carrier placed in the round window niche. By minimizing drug loss, extending action time, and increasing perilymph concentration, gelfoam enhances the therapeutic impact of IST, contributing to improved hearing outcomes in patients with SSNHL.
基金supported by National Natural Science Foundation of China(Grant Nos.51975202(Junjia Cui received the grant)and 52175315(Guangyao Li received the grant)).
文摘Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic forming process.In the present study,the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed.In particular,the orthogonal experimental design(OED)and central composite design(CCD)methods have been used.Through the range analysis and variance analysis of the experimental data,the influence degree of wire diameter(WD)and discharge energy(DE)on the forming quality was determined.Multiple regression analysis was performed using the response surface methodology.A prediction model for the attaching-die state coefficient was established accordingly.The following optimal arrangement of parameters was obtained(WD=0.759 mm,DE=2.926 kJ).The attaching-die state coefficient reached the peak value of 0.001.Better optimized wire diameter and discharge energy for a better attaching-die state could be screened by CCD compared with OED.The response surface method in CCD was more suitable for the design and optimization of the considered process parameters.
文摘The radiant tube burner was modeled and analyzed by the numerical simulation method to investigate the influence factors and rules of NO_(x) emissions in a W-type radiant tube.These factors,which include air preheating temperature,excess air coefficient,and fuel gas composition,were modified to study their effects on NO_(x) emissions under varying working conditions.Simulation results were compared with the theoretical calculation value based on chemical reaction equilibrium theory and the onsite experimental value to verify the simulation accuracy.The results show that NO_(x) emissions rise with increasing air preheating temperatures.NO_(x) production increases to an extreme value and then decreases during the oxygen-poor to oxygen-enriched process with the rise of the excess air coefficient.Enhancing the proportion of coke oven gas in the fuel gas raises the combustion temperature as well as the NO_(x) discharge.Both the thermal efficiency and NO_(x) emissions should be balanced.Therefore,the recommended values based on the simulation results are as follows:the air preheating temperature should not exceed 400℃,the excess air coefficient should be between 1.1 and 1.2,and the volume fraction of the coke oven gas should not exceed 30%.