Incredible progress has been made in human action recognition(HAR),significantly impacting computer vision applications in sports analytics.However,identifying dynamic and complex movements in sports like badminton re...Incredible progress has been made in human action recognition(HAR),significantly impacting computer vision applications in sports analytics.However,identifying dynamic and complex movements in sports like badminton remains challenging due to the need for precise recognition accuracy and better management of complex motion patterns.Deep learning techniques like convolutional neural networks(CNNs),long short-term memory(LSTM),and graph convolutional networks(GCNs)improve recognition in large datasets,while the traditional machine learning methods like SVM(support vector machines),RF(random forest),and LR(logistic regression),combined with handcrafted features and ensemble approaches,perform well but struggle with the complexity of fast-paced sports like badminton.We proposed an ensemble learning model combining support vector machines(SVM),logistic regression(LR),random forest(RF),and adaptive boosting(AdaBoost)for badminton action recognition.The data in this study consist of video recordings of badminton stroke techniques,which have been extracted into spatiotemporal data.The three-dimensional distance between each skeleton point and the right hip represents the spatial features.The temporal features are the results of Fast Dynamic Time Warping(FDTW)calculations applied to 15 frames of each video sequence.The weighted ensemble model employs soft voting classifiers from SVM,LR,RF,and AdaBoost to enhance the accuracy of badminton action recognition.The E2 ensemble model,which combines SVM,LR,and AdaBoost,achieves the highest accuracy of 95.38%.展开更多
A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble...A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble,and the weight of each clock in this ensemble is defined by using the spatial covariance matrix.The superimposition average of covariances in different subspaces reduces the correlations between clocks in the same laboratory to some extent.After optimizing the parameters of this weighting procedure,the frequency stabilities of virtual clock ensembles are significantly improved in most cases.展开更多
Based on the daily sea surface wind field prediction data of Japan Meteorological Agency(JMA) forecast model,National Centers for Environmental Prediction(NCEP GFS) model and U.S.Navy Operational Global Atmospheric Pr...Based on the daily sea surface wind field prediction data of Japan Meteorological Agency(JMA) forecast model,National Centers for Environmental Prediction(NCEP GFS) model and U.S.Navy Operational Global Atmospheric Prediction System(NOGAPS) model at 12:00 UTC from June 28 to August 10 in 2009,the bias-removed ensemble mean(BRE) was used to do the forecast test on the sea surface wind fields,and the root-mean-square error(RMSE) was used to test and evaluate the forecast results.The results showed that the BRE considerably reduced the RMSEs of 24 and 48 h sea surface wind field forecasts,and the forecast skill was superior to that of the single model forecast.The RMSE decreases in the south of central Bohai Sea and the middle of the Yellow Sea were the most obvious.In addition,the BRE forecast improved evidently the forecast skill of the gale process which occurred during July 13-14 and August 7 in 2009.The forecast accuracy of the wind speed and the gale location was also improved.展开更多
In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical m...In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m^(-2),particularly below 400 W m^(-2),with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m^(-2).As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately.展开更多
The Localized Weighted Ensemble Kalman Filter(LWEnKF)is a new nonlinear/non-Gaussian data assimilation(DA)method that can effectively alleviate the filter degradation problem faced by particle filtering,and it has gre...The Localized Weighted Ensemble Kalman Filter(LWEnKF)is a new nonlinear/non-Gaussian data assimilation(DA)method that can effectively alleviate the filter degradation problem faced by particle filtering,and it has great prospects for applications in geophysical models.In terms of operational applications,along-track sea surface height(AT-SSH),swath sea surface temperature(S-SST)and in-situ temperature and salinity(T/S)profiles are assimilated using the LWEnKF in the northern South China Sea(SCS).To adapt to the vertical S-coordinates of the Regional Ocean Modelling System(ROMS),a vertical localization radius function is designed for T/S profiles assimilation using the LWEnKF.The results show that the LWEnKF outperforms the local particle filter(LPF)due to the introduction of the Ensemble Kalman Filter(EnKF)as a proposal density;the RMSEs of SSH and SST from the LWEnKF are comparable to the EnKF,but the RMSEs of T/S profiles reduce significantly by approximately 55%for the T profile and 35%for the S profile(relative to the EnKF).As a result,the LWEnKF makes more reasonable predictions of the internal ocean temperature field.In addition,the three-dimensional structures of nonlinear mesoscale eddies are better characterized when using the LWEnKF.展开更多
An automated retinal disease detection system has long been in exis-tence and it provides a safe,no-contact and cost-effective solution for detecting this disease.This paper presents a game theory-based dynamic weight...An automated retinal disease detection system has long been in exis-tence and it provides a safe,no-contact and cost-effective solution for detecting this disease.This paper presents a game theory-based dynamic weighted ensem-ble of a feature extraction-based machine learning model and a deep transfer learning model for automatic retinal disease detection.The feature extraction-based machine learning model uses Gaussian kernel-based fuzzy rough sets for reduction of features,and XGBoost classifier for the classification.The transfer learning model uses VGG16 or ResNet50 or Inception-ResNet-v2.A novel ensemble classifier based on the game theory approach is proposed for the fusion of the outputs of the transfer learning model and the XGBoost classifier model.The ensemble approach significantly improves the accuracy of retinal disease pre-diction and results in an excellent performance when compared to the individual deep learning and feature-based models.展开更多
Root-cause identification plays a vital role in business decision making by providing effective future directions for the organizations.Aspect extraction and sentiment extraction plays a vital role in identifying the ...Root-cause identification plays a vital role in business decision making by providing effective future directions for the organizations.Aspect extraction and sentiment extraction plays a vital role in identifying the rootcauses.This paper proposes the Ensemble based temporal weighting and pareto ranking(ETP)model for Root-cause identification.Aspect extraction is performed based on rules and is followed by opinion identification using the proposed boosted ensemble model.The obtained aspects are validated and ranked using the proposed aspect weighing scheme.Pareto-rule based aspect selection is performed as the final selection mechanism and the results are presented for business decision making.Experiments were performed with the standard five product benchmark dataset.Performances on all five product reviews indicate the effective performance of the proposed model.Comparisons are performed using three standard state-of-the-art models and effectiveness is measured in terms of F-Measure and Detection rates.The results indicate improved performances exhibited by the proposed model with an increase in F-Measure levels at 1%–15%and detection rates at 4%–24%compared to the state-of-the-art models.展开更多
Effective technology for wind direction forecasting can be realized using the recent advances in machine learning.Consequently,the stability and safety of power systems are expected to be significantly improved.Howeve...Effective technology for wind direction forecasting can be realized using the recent advances in machine learning.Consequently,the stability and safety of power systems are expected to be significantly improved.However,the unstable and unpredictable qualities of the wind predict the wind direction a challenging problem.This paper proposes a practical forecasting approach based on the weighted ensemble of machine learning models.This weighted ensemble is optimized using a whale optimization algorithm guided by particle swarm optimization(PSO-Guided WOA).The proposed optimized weighted ensemble predicts the wind direction given a set of input features.The conducted experiments employed the wind power forecasting dataset,freely available on Kaggle and developed to predict the regular power generation at seven wind farms over forty-eight hours.The recorded results of the conducted experiments emphasize the effectiveness of the proposed ensemble in achieving accurate predictions of the wind direction.In addition,a comparison is established between the proposed optimized ensemble and other competing optimized ensembles to prove its superiority.Moreover,statistical analysis using one-way analysis of variance(ANOVA)and Wilcoxon’s rank-sum are provided based on the recorded results to confirm the excellent accuracy achieved by the proposed optimized weighted ensemble.展开更多
There has been many methods in constructing neural network (NN) ensembles, where the method of simultaneous training has succeed in generalization performance and efficiency. But just like regular methods of constru...There has been many methods in constructing neural network (NN) ensembles, where the method of simultaneous training has succeed in generalization performance and efficiency. But just like regular methods of constructing NN ensembles, it follows the two steps, first training component networks, and then combining them. As the two steps being independent, an assumption is used to facilitate interactions among NNs during the training stage. This paper presents a compact ensemble method which integrates the two steps of ensemble construction into one step by attempting to train individual NNs in an ensemble and weigh the individual members adaptively according to their individual performance in the same learning process. This provides an opportunity for the individual NNs to interact with each other based on their real contributions to the ensemble. The classification performance of NN compact ensemble (NNCE) was validated through some benchmark problems in machine learning, including Australian credit card assessment, pima Indians diabetes, heart disease, breast cancer and glass. Compared with other ensembles, the classification error rate of NNCE can be decreased by 0.45% to 68%. In addition, the NNCE was applied to fault diagnosis for rolling element bearing. The 11 time-domain statistical features are extracted as the properties of data, and the NNCE is employed to classify the data. With the results of several experiments, the compact ensemble method is shown to give good generalization performance. The compact ensemble method can recognize the different fault types and various fault degrees of the same fault type.展开更多
Proper waste management models using recent technologies like computer vision,machine learning(ML),and deep learning(DL)are needed to effectively handle the massive quantity of increasing waste.Therefore,waste classif...Proper waste management models using recent technologies like computer vision,machine learning(ML),and deep learning(DL)are needed to effectively handle the massive quantity of increasing waste.Therefore,waste classification becomes a crucial topic which helps to categorize waste into hazardous or non-hazardous ones and thereby assist in the decision making of the waste management process.This study concentrates on the design of hazardous waste detection and classification using ensemble learning(HWDC-EL)technique to reduce toxicity and improve human health.The goal of the HWDC-EL technique is to detect the multiple classes of wastes,particularly hazardous and non-hazardous wastes.The HWDC-EL technique involves the ensemble of three feature extractors using Model Averaging technique namely discrete local binary patterns(DLBP),EfficientNet,and DenseNet121.In addition,the flower pollination algorithm(FPA)based hyperparameter optimizers are used to optimally adjust the parameters involved in the EfficientNet and DenseNet121 models.Moreover,a weighted voting-based ensemble classifier is derived using three machine learning algorithms namely support vector machine(SVM),extreme learning machine(ELM),and gradient boosting tree(GBT).The performance of the HWDC-EL technique is tested using a benchmark Garbage dataset and it obtains a maximum accuracy of 98.85%.展开更多
Urban living in large modern cities exerts considerable adverse effectson health and thus increases the risk of contracting several chronic kidney diseases (CKD). The prediction of CKDs has become a major task in urb...Urban living in large modern cities exerts considerable adverse effectson health and thus increases the risk of contracting several chronic kidney diseases (CKD). The prediction of CKDs has become a major task in urbanizedcountries. The primary objective of this work is to introduce and develop predictive analytics for predicting CKDs. However, prediction of huge samples isbecoming increasingly difficult. Meanwhile, MapReduce provides a feasible framework for programming predictive algorithms with map and reduce functions.The relatively simple programming interface helps solve problems in the scalability and efficiency of predictive learning algorithms. In the proposed work, theiterative weighted map reduce framework is introduced for the effective management of large dataset samples. A binary classification problem is formulated usingensemble nonlinear support vector machines and random forests. Thus, instead ofusing the normal linear combination of kernel activations, the proposed work creates nonlinear combinations of kernel activations in prototype examples. Furthermore, different descriptors are combined in an ensemble of deep support vectormachines, where the product rule is used to combine probability estimates ofdifferent classifiers. Performance is evaluated in terms of the prediction accuracyand interpretability of the model and the results.展开更多
基金supported by the Center for Higher Education Funding(BPPT)and the Indonesia Endowment Fund for Education(LPDP),as acknowledged in decree number 02092/J5.2.3/BPI.06/9/2022。
文摘Incredible progress has been made in human action recognition(HAR),significantly impacting computer vision applications in sports analytics.However,identifying dynamic and complex movements in sports like badminton remains challenging due to the need for precise recognition accuracy and better management of complex motion patterns.Deep learning techniques like convolutional neural networks(CNNs),long short-term memory(LSTM),and graph convolutional networks(GCNs)improve recognition in large datasets,while the traditional machine learning methods like SVM(support vector machines),RF(random forest),and LR(logistic regression),combined with handcrafted features and ensemble approaches,perform well but struggle with the complexity of fast-paced sports like badminton.We proposed an ensemble learning model combining support vector machines(SVM),logistic regression(LR),random forest(RF),and adaptive boosting(AdaBoost)for badminton action recognition.The data in this study consist of video recordings of badminton stroke techniques,which have been extracted into spatiotemporal data.The three-dimensional distance between each skeleton point and the right hip represents the spatial features.The temporal features are the results of Fast Dynamic Time Warping(FDTW)calculations applied to 15 frames of each video sequence.The weighted ensemble model employs soft voting classifiers from SVM,LR,RF,and AdaBoost to enhance the accuracy of badminton action recognition.The E2 ensemble model,which combines SVM,LR,and AdaBoost,achieves the highest accuracy of 95.38%.
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFB3900701)the Science and Technology Plan Project of the State Administration for Market Regulation of China (Grant No.2023MK178)the National Natural Science Foundation of China (Grant No.42227802)。
文摘A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble,and the weight of each clock in this ensemble is defined by using the spatial covariance matrix.The superimposition average of covariances in different subspaces reduces the correlations between clocks in the same laboratory to some extent.After optimizing the parameters of this weighting procedure,the frequency stabilities of virtual clock ensembles are significantly improved in most cases.
基金Supported by Chinese Meteorological Administration's Special Funds(Meteorology) for Scientific Research on Public Causes( GYHY200906007)Gale Forecast Item of the Shengli Oil Field Observatory (2008001)~~
文摘Based on the daily sea surface wind field prediction data of Japan Meteorological Agency(JMA) forecast model,National Centers for Environmental Prediction(NCEP GFS) model and U.S.Navy Operational Global Atmospheric Prediction System(NOGAPS) model at 12:00 UTC from June 28 to August 10 in 2009,the bias-removed ensemble mean(BRE) was used to do the forecast test on the sea surface wind fields,and the root-mean-square error(RMSE) was used to test and evaluate the forecast results.The results showed that the BRE considerably reduced the RMSEs of 24 and 48 h sea surface wind field forecasts,and the forecast skill was superior to that of the single model forecast.The RMSE decreases in the south of central Bohai Sea and the middle of the Yellow Sea were the most obvious.In addition,the BRE forecast improved evidently the forecast skill of the gale process which occurred during July 13-14 and August 7 in 2009.The forecast accuracy of the wind speed and the gale location was also improved.
基金Innovation and Development Project of China Meteorological Administration(CXFZ2023J044)Innovation Foundation of CMA Public Meteorological Service Center(K2023002)+1 种基金“Tianchi Talents”Introduction Plan(2023)Key Innovation Team for Energy and Meteorology of China Meteorological Administration。
文摘In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m^(-2),particularly below 400 W m^(-2),with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m^(-2).As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately.
基金The National Key Research and Development Program of China under contract No.2018YFC1406202the National Natural Science Foundation of China under contract No.41830964.
文摘The Localized Weighted Ensemble Kalman Filter(LWEnKF)is a new nonlinear/non-Gaussian data assimilation(DA)method that can effectively alleviate the filter degradation problem faced by particle filtering,and it has great prospects for applications in geophysical models.In terms of operational applications,along-track sea surface height(AT-SSH),swath sea surface temperature(S-SST)and in-situ temperature and salinity(T/S)profiles are assimilated using the LWEnKF in the northern South China Sea(SCS).To adapt to the vertical S-coordinates of the Regional Ocean Modelling System(ROMS),a vertical localization radius function is designed for T/S profiles assimilation using the LWEnKF.The results show that the LWEnKF outperforms the local particle filter(LPF)due to the introduction of the Ensemble Kalman Filter(EnKF)as a proposal density;the RMSEs of SSH and SST from the LWEnKF are comparable to the EnKF,but the RMSEs of T/S profiles reduce significantly by approximately 55%for the T profile and 35%for the S profile(relative to the EnKF).As a result,the LWEnKF makes more reasonable predictions of the internal ocean temperature field.In addition,the three-dimensional structures of nonlinear mesoscale eddies are better characterized when using the LWEnKF.
文摘An automated retinal disease detection system has long been in exis-tence and it provides a safe,no-contact and cost-effective solution for detecting this disease.This paper presents a game theory-based dynamic weighted ensem-ble of a feature extraction-based machine learning model and a deep transfer learning model for automatic retinal disease detection.The feature extraction-based machine learning model uses Gaussian kernel-based fuzzy rough sets for reduction of features,and XGBoost classifier for the classification.The transfer learning model uses VGG16 or ResNet50 or Inception-ResNet-v2.A novel ensemble classifier based on the game theory approach is proposed for the fusion of the outputs of the transfer learning model and the XGBoost classifier model.The ensemble approach significantly improves the accuracy of retinal disease pre-diction and results in an excellent performance when compared to the individual deep learning and feature-based models.
文摘Root-cause identification plays a vital role in business decision making by providing effective future directions for the organizations.Aspect extraction and sentiment extraction plays a vital role in identifying the rootcauses.This paper proposes the Ensemble based temporal weighting and pareto ranking(ETP)model for Root-cause identification.Aspect extraction is performed based on rules and is followed by opinion identification using the proposed boosted ensemble model.The obtained aspects are validated and ranked using the proposed aspect weighing scheme.Pareto-rule based aspect selection is performed as the final selection mechanism and the results are presented for business decision making.Experiments were performed with the standard five product benchmark dataset.Performances on all five product reviews indicate the effective performance of the proposed model.Comparisons are performed using three standard state-of-the-art models and effectiveness is measured in terms of F-Measure and Detection rates.The results indicate improved performances exhibited by the proposed model with an increase in F-Measure levels at 1%–15%and detection rates at 4%–24%compared to the state-of-the-art models.
文摘Effective technology for wind direction forecasting can be realized using the recent advances in machine learning.Consequently,the stability and safety of power systems are expected to be significantly improved.However,the unstable and unpredictable qualities of the wind predict the wind direction a challenging problem.This paper proposes a practical forecasting approach based on the weighted ensemble of machine learning models.This weighted ensemble is optimized using a whale optimization algorithm guided by particle swarm optimization(PSO-Guided WOA).The proposed optimized weighted ensemble predicts the wind direction given a set of input features.The conducted experiments employed the wind power forecasting dataset,freely available on Kaggle and developed to predict the regular power generation at seven wind farms over forty-eight hours.The recorded results of the conducted experiments emphasize the effectiveness of the proposed ensemble in achieving accurate predictions of the wind direction.In addition,a comparison is established between the proposed optimized ensemble and other competing optimized ensembles to prove its superiority.Moreover,statistical analysis using one-way analysis of variance(ANOVA)and Wilcoxon’s rank-sum are provided based on the recorded results to confirm the excellent accuracy achieved by the proposed optimized weighted ensemble.
基金supported by National Natural Science Foundation of China(Grant No.50575179)National Hi-tech Research and Development Program of China(863 Program,Grant No.2006AA04Z420)
文摘There has been many methods in constructing neural network (NN) ensembles, where the method of simultaneous training has succeed in generalization performance and efficiency. But just like regular methods of constructing NN ensembles, it follows the two steps, first training component networks, and then combining them. As the two steps being independent, an assumption is used to facilitate interactions among NNs during the training stage. This paper presents a compact ensemble method which integrates the two steps of ensemble construction into one step by attempting to train individual NNs in an ensemble and weigh the individual members adaptively according to their individual performance in the same learning process. This provides an opportunity for the individual NNs to interact with each other based on their real contributions to the ensemble. The classification performance of NN compact ensemble (NNCE) was validated through some benchmark problems in machine learning, including Australian credit card assessment, pima Indians diabetes, heart disease, breast cancer and glass. Compared with other ensembles, the classification error rate of NNCE can be decreased by 0.45% to 68%. In addition, the NNCE was applied to fault diagnosis for rolling element bearing. The 11 time-domain statistical features are extracted as the properties of data, and the NNCE is employed to classify the data. With the results of several experiments, the compact ensemble method is shown to give good generalization performance. The compact ensemble method can recognize the different fault types and various fault degrees of the same fault type.
基金the Deanship of Scientific Research at King Khalid University for funding this work underGrant Number(RGP 2/209/42)PrincessNourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R136)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4210118DSR27).
文摘Proper waste management models using recent technologies like computer vision,machine learning(ML),and deep learning(DL)are needed to effectively handle the massive quantity of increasing waste.Therefore,waste classification becomes a crucial topic which helps to categorize waste into hazardous or non-hazardous ones and thereby assist in the decision making of the waste management process.This study concentrates on the design of hazardous waste detection and classification using ensemble learning(HWDC-EL)technique to reduce toxicity and improve human health.The goal of the HWDC-EL technique is to detect the multiple classes of wastes,particularly hazardous and non-hazardous wastes.The HWDC-EL technique involves the ensemble of three feature extractors using Model Averaging technique namely discrete local binary patterns(DLBP),EfficientNet,and DenseNet121.In addition,the flower pollination algorithm(FPA)based hyperparameter optimizers are used to optimally adjust the parameters involved in the EfficientNet and DenseNet121 models.Moreover,a weighted voting-based ensemble classifier is derived using three machine learning algorithms namely support vector machine(SVM),extreme learning machine(ELM),and gradient boosting tree(GBT).The performance of the HWDC-EL technique is tested using a benchmark Garbage dataset and it obtains a maximum accuracy of 98.85%.
文摘Urban living in large modern cities exerts considerable adverse effectson health and thus increases the risk of contracting several chronic kidney diseases (CKD). The prediction of CKDs has become a major task in urbanizedcountries. The primary objective of this work is to introduce and develop predictive analytics for predicting CKDs. However, prediction of huge samples isbecoming increasingly difficult. Meanwhile, MapReduce provides a feasible framework for programming predictive algorithms with map and reduce functions.The relatively simple programming interface helps solve problems in the scalability and efficiency of predictive learning algorithms. In the proposed work, theiterative weighted map reduce framework is introduced for the effective management of large dataset samples. A binary classification problem is formulated usingensemble nonlinear support vector machines and random forests. Thus, instead ofusing the normal linear combination of kernel activations, the proposed work creates nonlinear combinations of kernel activations in prototype examples. Furthermore, different descriptors are combined in an ensemble of deep support vectormachines, where the product rule is used to combine probability estimates ofdifferent classifiers. Performance is evaluated in terms of the prediction accuracyand interpretability of the model and the results.