Water-splitting reactions such as the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)typically require expensive noble metal-based electrocatalysts.This has motivated researchers to develop nove...Water-splitting reactions such as the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)typically require expensive noble metal-based electrocatalysts.This has motivated researchers to develop novel,cost-effective electrocatalytic systems.In this study,a new multicomponent nanocomposite was assembled by combining functionalized multiwalled carbon nanotubes,a Cu-based metal–organic framework(MOF)(HKUST-1 or HK),and a sulfidized NiMn-layered double hydroxide(NiMn-S).The resulting nanocomposite,abbreviated as MW/HK/NiMn-S,features a unique architecture,high porosity,numerous electroactive Cu/Ni/Mn sites,fast charge transfer,excellent structural stability,and conductivity.At a current density of 10 mA cm-2,this dual-function electrocatalyst shows remarkable performance,with ultralow overpotential values of 163 mV(OER)or 73 mV(HER),as well as low Tafel slopes(57 and 75 mV dec-1,respectively).Additionally,its high turnover frequency values(4.43 s-1 for OER;3.96 s-1 for HER)are significantly superior to those of standard noble metal-based Pt/C and IrO2 systems.The synergistic effect of the nanocomposite's different components is responsible for its enhanced electrocatalytic performance.A density functional theory study revealed that the multi-interface and multicomponent heterostructure contribute to increased electrical conductivity and decreased energy barrier,resulting in superior electrocatalytic HER/OER activity.This study presents a novel vision for designing advanced electrocatalysts with superior performance in water splitting.Various composites have been utilized in water-splitting applications.This study investigates the use of the MW/HK/NiMn-S electrocatalyst for water splitting for the first time to indicate the synergistic effect between carbon-based materials along with layered double hydroxide compounds and porous compounds of MOF.The unique features of each component in this composite can be an interesting topic in the field of water splitting.展开更多
The recharged zinc-air battery(ZAB) has drawn significant attention owing to increasing requirement for energy conversion and storage devices.Fabricating the efficient bifunctional oxygen catalyst using a convenient s...The recharged zinc-air battery(ZAB) has drawn significant attention owing to increasing requirement for energy conversion and storage devices.Fabricating the efficient bifunctional oxygen catalyst using a convenient strategy is vitally important for the rechargeable ZAB.In this study,the bimetallic ZIFs-containing electrospun(ES) carbon nanofibers membrane with hierarchically porous structure was prepared by coaxial electrospinning and carbonization process,which was expected to be a bifunctional electrocatalyst for ZABs.Owing to the formed dual single-atomic sites of Co-N_(4) and Zn-N_(4),the obtained ES-Co/ZnCNZIFexhibited the preferable performance toward oxygen reduction reaction(ORR) with E1/2of 0.857 V and JLof 5.52 mA cm^(-2),which were more than Pt/C.Meanwhile,it exhibited a marked oxygen evolution reaction(OER) property with overpotential of 462 mV due to the agglomerated metallic Co nanoparticles.Furthermore,the ZAB based on the ES-Co/Zn-CNZIFcarbon nanofibers membranes delivered peak power density of 215 mW cm^(-2),specific capacity of 802.6 mA h g^(-1),and exceptional cycling stability,far larger than Pt/C+RuO_(2)-based ZABs.A solid-state ZAB based on ES-Co/Zn-CNZIFshowed better flexibility and stability with different bending angles.展开更多
Highly active Ir‐La‐S/AC catalyst was successfully prepared by co‐impregnation of an activated carbon(AC) carrier with a sulfuric acid solution of Ir and La species and compared with a tradition‐ally prepared Ir...Highly active Ir‐La‐S/AC catalyst was successfully prepared by co‐impregnation of an activated carbon(AC) carrier with a sulfuric acid solution of Ir and La species and compared with a tradition‐ally prepared Ir‐La/AC catalyst. High angle annular dark‐field‐scanning transmission electron mi‐croscopy(HAADF‐STEM) measurement results show that most of the Ir species on Ir‐La‐S/AC exist as single atomic sites, while those on Ir‐La/AC exist as nanoparticles with an average diameter of 1.5 nm. Evaluation of Ir‐La‐S/AC as a catalyst for heterogeneous carbonylation of methanol to acetyl gave a maximum TOF (turn‐over‐frequency) of 2760 h^–1, which was distinctly higher than that achieved by the Ir‐La/AC catalyst(approximately 1000 h^-1). Temperature‐programmed desorption of ammonia(NH3‐TPD) result shows that the addition of sulfuric acid during the preparation pro‐cedure results in significantly more acidic sites on Ir‐La‐S/AC than those on Ir‐La/AC, which plays a key role in the enhancement of CO insertion as the rate‐determining step. Tempera‐ture‐programmed reduction(TPR) and in situ X‐ray photoelectron spectroscopy reveal that Ir spe‐cies are more reducible, and that more Ir^+ might be formed by activation of Ir‐La‐S/AC than those on the Ir‐La/AC catalyst, which is thought to be beneficial for reductive elimination of AcI from Ir^3+ species as an essential step for CH3I regeneration and acetyl formation.展开更多
5-Hydroxymethylfurfural(5-HMF),as a key platform compound for the conversion of biomass to various biomass-derived chemicals and biofuels,has been attracted extensive attention.In this research,using Pickering high in...5-Hydroxymethylfurfural(5-HMF),as a key platform compound for the conversion of biomass to various biomass-derived chemicals and biofuels,has been attracted extensive attention.In this research,using Pickering high internal phase emulsions(Pickering HIPEs)as template and functional metal-organic frameworks(MOFs,UiO-66-SO;H and UiO-66-NH;)/Tween 85 as co-stabilizers to synthesis the dual acid-base bifunctional macroporous polymer catalyst by one-pot process,which has excellent catalytic activity in the cascade reaction of converting cellulose to 5-HMF.The effects of the emulsion parameters including the amount of surfactant(ranging from 0.5%to 2.0%(mass)),the internal phase volume fraction(ranging from 75%to 90%)and the acid/base Pickering particles mass ratio(ranging from 0:6 to 6:0)on the morphology and catalytic performance of solid catalyst were systematically researched.The results of catalytic experiments suggested that the connected large pore size of catalyst can effectively improve the cellulose conversion,and the synergistic effect of acid and base active sites can effectively improve the 5-HMF yield.The highest 5-HMF yield,about 40.5%,can be obtained by using polymer/MOFs composite as catalyst(Poly-P12,the pore size of(53.3±11.3)μm,the acid density of 1.99 mmol·g^(-1)and the base density of 1.13 mol·g^(-1))under the optimal reaction conditions(130℃,3 h).Herein,the polymer/MOFs composite with open-cell structure was prepared by the Pickering HIPEs templating method,which provided a favorable experimental basis and theoretical reference for achieving efficient production of high addedvalue product from abundant biomass.展开更多
Metal-nitrogen-carbon(M-N-C)single-atom catalysts exhibit desirable electrochemical catalytic properties.However,the replacement of N atoms by heteroatoms(B,P,S,etc.)has been regarded as a useful method for regulating...Metal-nitrogen-carbon(M-N-C)single-atom catalysts exhibit desirable electrochemical catalytic properties.However,the replacement of N atoms by heteroatoms(B,P,S,etc.)has been regarded as a useful method for regulating the coordination environment.The structure engineered M-N-C sites via doping heteroatoms play an important role to the adsorption and activation of the oxygen intermediate.Herein,we develop an efficient strategy to construct dual atomic site catalysts via the formation of a Co_(1)-PN and Ni1-PN planar configuration.The developed Co_(1)-PNC/Ni1-PNC catalyst exhibits excellent bifunctional electrocatalytic performance in alkaline solution.Both experimental and theoretical results demonstrated that the N/P coordinated Co/Ni sites moderately reduced the binding interaction of oxygen intermediates.The Co_(1)-PNC/Ni1-PNC endows a rechargeable Zn-air battery with excellent power density and cycling stability as an air-cathode,which is superior to that of the benchmark Pt/C+IrO_(2).This work paves an avenue for design of dual single-atomic sites and regulation of the atomic configuration on carbon-based materials to achieve high-performance electrocatalysts.展开更多
Bifunctional electrocatalysts with high activity toward both oxygen reduction and evolution reaction are highly desirable for rechargeable Zn-air batteries. Herein, a kind of carbon nanotube (CNT) supported single-sit...Bifunctional electrocatalysts with high activity toward both oxygen reduction and evolution reaction are highly desirable for rechargeable Zn-air batteries. Herein, a kind of carbon nanotube (CNT) supported single-site Fe-N-C catalyst was fabricated via pyrolyzing in-situ grown Fe-containing zeolitic imidazolate frameworks on CNTs. CNTs not only serve as the physical supports of the Fe-N-C active sites but also provide a conductive network to facilitate the fast electron and ion transfer. The as-synthesized catalysts exhibit a half-wave potential of 0.865 V for oxygen reduction reaction and a low overpotential of 0.442 V at 10 mA·cm^(−2) for oxygen evolution, which is 310 mV smaller than that of Fe-N-C without CNTs. The rechargeable Zn-air batteries fabricated with such hybrid catalysts display a high peak power density of 182 mW·cm^(−2) and an excellent cycling stability of over 1,000 h at 10 mA·cm^(−2), which outperforms commercial Pt-C and most of the reported catalysts. This facile strategy of combining single-site Metal-N-C with CNTs network is effective for preparing highly active bifunctional electrocatalysts.展开更多
Efficient bifunctional catalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are vital for rechargeable Zn-air batteries(ZABs).Herein,an oxygen-respirable sponge-like Co@C–O–Cs catalyst with ...Efficient bifunctional catalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are vital for rechargeable Zn-air batteries(ZABs).Herein,an oxygen-respirable sponge-like Co@C–O–Cs catalyst with oxygen-rich active sites was designed and constructed for both ORR and OER by a facile carbon dot-assisted strategy.The aerophilic triphase interface of Co@C–O–Cs cathode efficiently boosts oxygen diffusion and transfer.The theoretical calculations and experimental studies revealed that the Co–C–COC active sites can redistribute the local charge density and lower the reaction energy barrier.The Co@C–O–Cs catalyst displays superior bifunctional catalytic activities with a half-wave potential of 0.82 V for ORR and an ultralow overpotential of 294 mV at 10 mA cm^(−2) for OER.Moreover,it can drive the liquid ZABs with high peak power density(106.4 mW cm^(−2)),specific capacity(720.7 mAh g^(−1)),outstanding long-term cycle stability(over 750 cycles at 10 mA cm^(−2)),and exhibits excellent feasibility in flexible all-solid-state ZABs.These findings provide new insights into the rational design of efficient bifunctional oxygen catalysts in rechargeable metal-air batteries.展开更多
The development of high-performance,low-cost bifunctional catalysts with long-term stability for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is one of the most critical challenges for the large...The development of high-performance,low-cost bifunctional catalysts with long-term stability for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is one of the most critical challenges for the large-scale application of metal-air batteries.Herein,we report an advanced nitrogen-doped mesoporous carbon(NMC)composite(NiCo2O4/CoNx-NMC)formed from a mixture of Co-and Ni-hydroxide-infiltrated phenolic resin and melamine resin.This composite exhibits superior electrocatalytic activity,stability,and selectivity for the ORR and OER.The activity parameter(DE),which is an indicator of the overall catalytic activity of bifunctional catalysts,was 0.76 V for NiCo2O4/CoNx-NMC.Therefore,catalyst outperforms the majority of previously reported non-precious metal-based bifunctional electrocatalysts.The remarkable ultra-high catalytic performance of NiCo2O4/CoNx-NMC for the ORR and OER can be attributed to the presence of different active sites of the CoNx structure and the formation of NiCo2O4 with the spinel structure,which was obtained by a stepwise pyrolysis process.This synthesis strategy opens a new avenue for the rational design of highly active bifunctional electrocatalysts.展开更多
Hydrothermal deactivation is a constant chal-lenge in commercial catalytic process aimed at NOx emission control,which may be observed in the low(150-400℃)or high(400-550℃)-reaction regions.To the best of our knowle...Hydrothermal deactivation is a constant chal-lenge in commercial catalytic process aimed at NOx emission control,which may be observed in the low(150-400℃)or high(400-550℃)-reaction regions.To the best of our knowledge,there is a lack of systematic research regarding the correlation between the reaction sites and the mechanism of hydrothermal degradation at various reaction regions.For a targeted investigation of this,Cu/zeolite catalysts have been prepared using different amounts of polyvinyl alcohol for adjusting their redox and acid properties.These catalysts exhibit hydrothermal deactivation in different reaction regions.No change is observed in the reaction mechanism even with hydrother-mal deactivation,but various reaction sites determine the performance deterioration in the low-and high-reaction regions.The redox properties and weak acid sites affect the hydrothermal deactivation in the low-reaction region,whereas the moderate/strong acid sites related to the structure mainly influence the hydrothermal deactivation in the high-reaction region.This work provides several the-oretical insights for optimizing the hydrothermal stabilities of Cu/zeolite catalysts.展开更多
The rational control of the active site of metal-organic frameworks(MOFs)derived nanomaterials is essential to build efficient bifunctional oxygen reduction/evolution reaction(ORR/OER)catalysts.Accordingly,through des...The rational control of the active site of metal-organic frameworks(MOFs)derived nanomaterials is essential to build efficient bifunctional oxygen reduction/evolution reaction(ORR/OER)catalysts.Accordingly,through designing and constructing a Co_(3)O_(4)-Co heterostructure embedded in Co,N co-doped carbon polyhedra derived(Co_(3)O_(4)-Co@NC)from the in-situ compositions of ZIF-67 and cobalt nanocrystals synthesized by the strategy of in-situ NaBH4 reduction,the dual-active site(Co_(3)O_(4)-Co and Co-N_(x))is synchronously realized in a MOFs derived nanomaterials.The formed Co_(3)O_(4)-Co@NC shows excellent bifunctional electrocatalytic activity with ultra-small potential gap(ΔE=E_(j=10)(OER)–E_(1/2)(ORR))of 0.72 V,which surpasses the commercial Pt/C and RuO_(2) catalysts.The theory calculation results reveal that the excellent bifunctional electrocatalytic activity can be attributed to the charge redistribution of Co of Co-N_(x) induced by the synergistic effects of well-tuned active sites of Co_(3)O_(4)-Co nanoparticle and Co-N_(x),thus optimizing the rate-determining step of the desorption of O_(2)^(*)intermediate in ORR and OH^(*)intermediate in OER.The rechargeable Zn-air batteries with our bifunctional catalysts exhibit superior performance as well as high cycling stability.This simple-effective optimization strategy offers prospects for tuning the active site of MOF derived bifunctional catalyst in electrochemical energy devices.展开更多
Designing bifunctional oxygen electrocatalysts with high activity,lasting stability,and low-cost for rechargeable zinc-air batteries(RZABs)is a tough challenge.Herein,an advanced electrocatalyst is prepared by anchori...Designing bifunctional oxygen electrocatalysts with high activity,lasting stability,and low-cost for rechargeable zinc-air batteries(RZABs)is a tough challenge.Herein,an advanced electrocatalyst is prepared by anchoring atomically dispersed Co atoms on Ndoped graphene-like hierarchically porous carbon nanosheets(SA-Co-N4-GCs)and thereby forming Co-N4-C architecture.Its unique structure with excellent conductivity,large surface area,and three dimensional(3D)interconnected hierarchically porous architecture exposes not only more Co-N4 active sites to accelerate the kinetics of both oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),but also provides an efficient charge/mass transport environment to reduce diffusion barrier.Consequently,SA-Co-N4-GCs exhibits excellent ORR/OER bifunctional activities and durability,surpassing noble-metal catalysts.Liquid RZABs using SA-Co-N4-GCs cathodes display a high open-circuit voltage of 1.51 V,a remarkable power density of 149.3 mW·cm−2,as well as excellent stability and rechargeability with faint increase in polarization even at a large depth of charge–discharge cycle with 16 h per cycle over an entire 600 h long-term test.Moreover,flexible quasi-solid-state RZABs with SA-Co-N4-GCs cathodes also deliver a considerable power density of 124.5 mW·cm−2,which is even higher than that of liquid batteries using noble-metal catalysts.This work has thrown new insight into development of high-performance and low-cost electrocatalysts for energy conversion and storage.展开更多
The activity of two Cu/SiO2 catalysts prepared by the chemisorption hydrolysis technique has been tested in the hydrogenation reaction of 3-methyl-cyclohexanone. Both catalysts were found to be very active at 60 ℃ an...The activity of two Cu/SiO2 catalysts prepared by the chemisorption hydrolysis technique has been tested in the hydrogenation reaction of 3-methyl-cyclohexanone. Both catalysts were found to be very active at 60 ℃ and 1 atm of H2. Characterization of the materials by FT-IR of adsorbed CO and TEM put in light the presence of well formed Cu cristallites. By assuming a cuboctahedral model we could show that the hydrogenation activity is linked to high coordination sites on the metal particle. A comparison is also reported with a sample prepared by ammonia evaporation that was found to be inactive in the hydrogenation reaction under the same experimental conditions.展开更多
An approach is suggested to distinguish different types of active sites responsible for different reactions on bifunctional catalysts.The model assumes a non-uniform vulnerability of active sites that depends on their...An approach is suggested to distinguish different types of active sites responsible for different reactions on bifunctional catalysts.The model assumes a non-uniform vulnerability of active sites that depends on their location.Problems on the relationship between the dispersion of the active phase and selectivity are discussed.The effect of coke formation on the activity change of different sites is analyzed.展开更多
Peroxymonosulfate(PMS)activation and photocatalysis are effective technologies to remove organic pollutants,but the adsorption effect of the catalyst is usually unheeded in degradation process.Herein,a bifunctional ca...Peroxymonosulfate(PMS)activation and photocatalysis are effective technologies to remove organic pollutants,but the adsorption effect of the catalyst is usually unheeded in degradation process.Herein,a bifunctional catalyst of amorphous MoS_(x)(a-MoS_(x))with 3D layer-by-layer superstructure was synthesized by assembling basic active units[Mo_(3)S_(13)]^(2-)of MoS_(2).The large interlayer spacing and high exposure of active sites render a-MoS_(x)to have excellent synergy of adsorption and photo-assisted PMS activation for tetracycline(TC)degradation.Experiments and DFT calculation show that TC can be efficiently enriched on a-MoS_(x)by pore filling,π-πinteraction,hydrogen bonding and high adsorption energy.Subsequently,PMS can be quickly activated through electron transfer with a-MoS_(x),resulting in high TC degradation efficiency of 96.6%within 20 min.In addition,the synergistic mechanism of adsorption and photo-assisted PMS activation was explored,and the degradation pathway of TC was expounded.This work is inspirational for constructing bifunctional catalysts with superior synergistic adsorption and catalytic capabilities to remove refractory organic pollutants in water.展开更多
基金Iran National Science Foundation(INSF)under project No.4025105the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(Grant No.2022-K31)+1 种基金the Zhejiang Province Key Research and Development Project(2023 C01191)Alexander M.Kirillov acknowledges the Foundation for Science and Technology(LISBOA-01-0145-FEDER-029697,PTDC/QUIQIN/3898/2020,LA/P/0056/2020,UIDB/00100/2020).
文摘Water-splitting reactions such as the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)typically require expensive noble metal-based electrocatalysts.This has motivated researchers to develop novel,cost-effective electrocatalytic systems.In this study,a new multicomponent nanocomposite was assembled by combining functionalized multiwalled carbon nanotubes,a Cu-based metal–organic framework(MOF)(HKUST-1 or HK),and a sulfidized NiMn-layered double hydroxide(NiMn-S).The resulting nanocomposite,abbreviated as MW/HK/NiMn-S,features a unique architecture,high porosity,numerous electroactive Cu/Ni/Mn sites,fast charge transfer,excellent structural stability,and conductivity.At a current density of 10 mA cm-2,this dual-function electrocatalyst shows remarkable performance,with ultralow overpotential values of 163 mV(OER)or 73 mV(HER),as well as low Tafel slopes(57 and 75 mV dec-1,respectively).Additionally,its high turnover frequency values(4.43 s-1 for OER;3.96 s-1 for HER)are significantly superior to those of standard noble metal-based Pt/C and IrO2 systems.The synergistic effect of the nanocomposite's different components is responsible for its enhanced electrocatalytic performance.A density functional theory study revealed that the multi-interface and multicomponent heterostructure contribute to increased electrical conductivity and decreased energy barrier,resulting in superior electrocatalytic HER/OER activity.This study presents a novel vision for designing advanced electrocatalysts with superior performance in water splitting.Various composites have been utilized in water-splitting applications.This study investigates the use of the MW/HK/NiMn-S electrocatalyst for water splitting for the first time to indicate the synergistic effect between carbon-based materials along with layered double hydroxide compounds and porous compounds of MOF.The unique features of each component in this composite can be an interesting topic in the field of water splitting.
基金supported by the Beijing Natural Science Foundation (2222004)。
文摘The recharged zinc-air battery(ZAB) has drawn significant attention owing to increasing requirement for energy conversion and storage devices.Fabricating the efficient bifunctional oxygen catalyst using a convenient strategy is vitally important for the rechargeable ZAB.In this study,the bimetallic ZIFs-containing electrospun(ES) carbon nanofibers membrane with hierarchically porous structure was prepared by coaxial electrospinning and carbonization process,which was expected to be a bifunctional electrocatalyst for ZABs.Owing to the formed dual single-atomic sites of Co-N_(4) and Zn-N_(4),the obtained ES-Co/ZnCNZIFexhibited the preferable performance toward oxygen reduction reaction(ORR) with E1/2of 0.857 V and JLof 5.52 mA cm^(-2),which were more than Pt/C.Meanwhile,it exhibited a marked oxygen evolution reaction(OER) property with overpotential of 462 mV due to the agglomerated metallic Co nanoparticles.Furthermore,the ZAB based on the ES-Co/Zn-CNZIFcarbon nanofibers membranes delivered peak power density of 215 mW cm^(-2),specific capacity of 802.6 mA h g^(-1),and exceptional cycling stability,far larger than Pt/C+RuO_(2)-based ZABs.A solid-state ZAB based on ES-Co/Zn-CNZIFshowed better flexibility and stability with different bending angles.
基金supported by the National Key R&D Program of China (2017YFB0602203)~~
文摘Highly active Ir‐La‐S/AC catalyst was successfully prepared by co‐impregnation of an activated carbon(AC) carrier with a sulfuric acid solution of Ir and La species and compared with a tradition‐ally prepared Ir‐La/AC catalyst. High angle annular dark‐field‐scanning transmission electron mi‐croscopy(HAADF‐STEM) measurement results show that most of the Ir species on Ir‐La‐S/AC exist as single atomic sites, while those on Ir‐La/AC exist as nanoparticles with an average diameter of 1.5 nm. Evaluation of Ir‐La‐S/AC as a catalyst for heterogeneous carbonylation of methanol to acetyl gave a maximum TOF (turn‐over‐frequency) of 2760 h^–1, which was distinctly higher than that achieved by the Ir‐La/AC catalyst(approximately 1000 h^-1). Temperature‐programmed desorption of ammonia(NH3‐TPD) result shows that the addition of sulfuric acid during the preparation pro‐cedure results in significantly more acidic sites on Ir‐La‐S/AC than those on Ir‐La/AC, which plays a key role in the enhancement of CO insertion as the rate‐determining step. Tempera‐ture‐programmed reduction(TPR) and in situ X‐ray photoelectron spectroscopy reveal that Ir spe‐cies are more reducible, and that more Ir^+ might be formed by activation of Ir‐La‐S/AC than those on the Ir‐La/AC catalyst, which is thought to be beneficial for reductive elimination of AcI from Ir^3+ species as an essential step for CH3I regeneration and acetyl formation.
基金financially supported by the National Natural Science Foundation of China(No.21606100)the Natural Science Foundation of Jiangsu Province(No.BK20180850)+1 种基金the China Postdoctoral Science Foundation(Nos.2019M651740 and 2019T120397)the Young Talent Cultivate Programme of Jiangsu University。
文摘5-Hydroxymethylfurfural(5-HMF),as a key platform compound for the conversion of biomass to various biomass-derived chemicals and biofuels,has been attracted extensive attention.In this research,using Pickering high internal phase emulsions(Pickering HIPEs)as template and functional metal-organic frameworks(MOFs,UiO-66-SO;H and UiO-66-NH;)/Tween 85 as co-stabilizers to synthesis the dual acid-base bifunctional macroporous polymer catalyst by one-pot process,which has excellent catalytic activity in the cascade reaction of converting cellulose to 5-HMF.The effects of the emulsion parameters including the amount of surfactant(ranging from 0.5%to 2.0%(mass)),the internal phase volume fraction(ranging from 75%to 90%)and the acid/base Pickering particles mass ratio(ranging from 0:6 to 6:0)on the morphology and catalytic performance of solid catalyst were systematically researched.The results of catalytic experiments suggested that the connected large pore size of catalyst can effectively improve the cellulose conversion,and the synergistic effect of acid and base active sites can effectively improve the 5-HMF yield.The highest 5-HMF yield,about 40.5%,can be obtained by using polymer/MOFs composite as catalyst(Poly-P12,the pore size of(53.3±11.3)μm,the acid density of 1.99 mmol·g^(-1)and the base density of 1.13 mol·g^(-1))under the optimal reaction conditions(130℃,3 h).Herein,the polymer/MOFs composite with open-cell structure was prepared by the Pickering HIPEs templating method,which provided a favorable experimental basis and theoretical reference for achieving efficient production of high addedvalue product from abundant biomass.
基金This work was supported by the National Natural Science Foundation of China(Nos.21971135,21925202,21872076,and 21590792)the National Key R&D Program of China(Nos.2017YFA0700101 and 2016YFA0202801)Beijing Natural Science Foundation(No.JQ18007).
文摘Metal-nitrogen-carbon(M-N-C)single-atom catalysts exhibit desirable electrochemical catalytic properties.However,the replacement of N atoms by heteroatoms(B,P,S,etc.)has been regarded as a useful method for regulating the coordination environment.The structure engineered M-N-C sites via doping heteroatoms play an important role to the adsorption and activation of the oxygen intermediate.Herein,we develop an efficient strategy to construct dual atomic site catalysts via the formation of a Co_(1)-PN and Ni1-PN planar configuration.The developed Co_(1)-PNC/Ni1-PNC catalyst exhibits excellent bifunctional electrocatalytic performance in alkaline solution.Both experimental and theoretical results demonstrated that the N/P coordinated Co/Ni sites moderately reduced the binding interaction of oxygen intermediates.The Co_(1)-PNC/Ni1-PNC endows a rechargeable Zn-air battery with excellent power density and cycling stability as an air-cathode,which is superior to that of the benchmark Pt/C+IrO_(2).This work paves an avenue for design of dual single-atomic sites and regulation of the atomic configuration on carbon-based materials to achieve high-performance electrocatalysts.
基金This work was supported by the Ministry of Science and Technology of China(No.2016YFA0201904)the National Natural Science Foundation of China(No.21631002)+2 种基金Beijing National Laboratory for Molecular Sciences(No.BNLMS-CXTD-202001)Shenzhen Basic Research Project(No.JCYJ20170817113121505)Shenzhen KQTD Project(No.KQTD20180411143400981).
文摘Bifunctional electrocatalysts with high activity toward both oxygen reduction and evolution reaction are highly desirable for rechargeable Zn-air batteries. Herein, a kind of carbon nanotube (CNT) supported single-site Fe-N-C catalyst was fabricated via pyrolyzing in-situ grown Fe-containing zeolitic imidazolate frameworks on CNTs. CNTs not only serve as the physical supports of the Fe-N-C active sites but also provide a conductive network to facilitate the fast electron and ion transfer. The as-synthesized catalysts exhibit a half-wave potential of 0.865 V for oxygen reduction reaction and a low overpotential of 0.442 V at 10 mA·cm^(−2) for oxygen evolution, which is 310 mV smaller than that of Fe-N-C without CNTs. The rechargeable Zn-air batteries fabricated with such hybrid catalysts display a high peak power density of 182 mW·cm^(−2) and an excellent cycling stability of over 1,000 h at 10 mA·cm^(−2), which outperforms commercial Pt-C and most of the reported catalysts. This facile strategy of combining single-site Metal-N-C with CNTs network is effective for preparing highly active bifunctional electrocatalysts.
基金supported by the National Key Research and Development Program of China(No.2019YFC1907801)National Natural Science Foundation of China(No.52174286)+1 种基金the Science and Technology Innovation Program of Hunan Province(2021RC3014)Innovation-Driven Project of Central South University(No.2020CX007)。
文摘Efficient bifunctional catalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are vital for rechargeable Zn-air batteries(ZABs).Herein,an oxygen-respirable sponge-like Co@C–O–Cs catalyst with oxygen-rich active sites was designed and constructed for both ORR and OER by a facile carbon dot-assisted strategy.The aerophilic triphase interface of Co@C–O–Cs cathode efficiently boosts oxygen diffusion and transfer.The theoretical calculations and experimental studies revealed that the Co–C–COC active sites can redistribute the local charge density and lower the reaction energy barrier.The Co@C–O–Cs catalyst displays superior bifunctional catalytic activities with a half-wave potential of 0.82 V for ORR and an ultralow overpotential of 294 mV at 10 mA cm^(−2) for OER.Moreover,it can drive the liquid ZABs with high peak power density(106.4 mW cm^(−2)),specific capacity(720.7 mAh g^(−1)),outstanding long-term cycle stability(over 750 cycles at 10 mA cm^(−2)),and exhibits excellent feasibility in flexible all-solid-state ZABs.These findings provide new insights into the rational design of efficient bifunctional oxygen catalysts in rechargeable metal-air batteries.
基金supported by the National Basic Research Program of China (973 Program 2011CBA00501)+2 种基金Shanghai Municipal Science and Technology Commission China (11DZ1200300)the Foundation of State Key Laboratory of Coal Conversion (11‐12‐610)~~
基金financially supported by the National Natural Science Foundation of China(No.21677171)the West Light Foundation of Chinese Academy of Sciences(No.2016-YJRC-1)。
文摘The development of high-performance,low-cost bifunctional catalysts with long-term stability for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is one of the most critical challenges for the large-scale application of metal-air batteries.Herein,we report an advanced nitrogen-doped mesoporous carbon(NMC)composite(NiCo2O4/CoNx-NMC)formed from a mixture of Co-and Ni-hydroxide-infiltrated phenolic resin and melamine resin.This composite exhibits superior electrocatalytic activity,stability,and selectivity for the ORR and OER.The activity parameter(DE),which is an indicator of the overall catalytic activity of bifunctional catalysts,was 0.76 V for NiCo2O4/CoNx-NMC.Therefore,catalyst outperforms the majority of previously reported non-precious metal-based bifunctional electrocatalysts.The remarkable ultra-high catalytic performance of NiCo2O4/CoNx-NMC for the ORR and OER can be attributed to the presence of different active sites of the CoNx structure and the formation of NiCo2O4 with the spinel structure,which was obtained by a stepwise pyrolysis process.This synthesis strategy opens a new avenue for the rational design of highly active bifunctional electrocatalysts.
基金financially supported by the National Natural Science Foundation of China (Nos.22072098 and 21802099)Sichuan Science and Technology Program (No. 2021YJ0333)the National Engineering Laboratory for Mobile Source Emission Control Technology (No.NELMS2017A06)
文摘Hydrothermal deactivation is a constant chal-lenge in commercial catalytic process aimed at NOx emission control,which may be observed in the low(150-400℃)or high(400-550℃)-reaction regions.To the best of our knowledge,there is a lack of systematic research regarding the correlation between the reaction sites and the mechanism of hydrothermal degradation at various reaction regions.For a targeted investigation of this,Cu/zeolite catalysts have been prepared using different amounts of polyvinyl alcohol for adjusting their redox and acid properties.These catalysts exhibit hydrothermal deactivation in different reaction regions.No change is observed in the reaction mechanism even with hydrother-mal deactivation,but various reaction sites determine the performance deterioration in the low-and high-reaction regions.The redox properties and weak acid sites affect the hydrothermal deactivation in the low-reaction region,whereas the moderate/strong acid sites related to the structure mainly influence the hydrothermal deactivation in the high-reaction region.This work provides several the-oretical insights for optimizing the hydrothermal stabilities of Cu/zeolite catalysts.
基金The authors acknowledge support from the National Natural Science Foundation of China(No.21875039)Minjiang Professorship(XRC-1677)+1 种基金Fujian province’s high level innovative and entrepreneurial talents(No.50012709)the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment(No.SKLPEE-201814),Fuzhou University.
文摘The rational control of the active site of metal-organic frameworks(MOFs)derived nanomaterials is essential to build efficient bifunctional oxygen reduction/evolution reaction(ORR/OER)catalysts.Accordingly,through designing and constructing a Co_(3)O_(4)-Co heterostructure embedded in Co,N co-doped carbon polyhedra derived(Co_(3)O_(4)-Co@NC)from the in-situ compositions of ZIF-67 and cobalt nanocrystals synthesized by the strategy of in-situ NaBH4 reduction,the dual-active site(Co_(3)O_(4)-Co and Co-N_(x))is synchronously realized in a MOFs derived nanomaterials.The formed Co_(3)O_(4)-Co@NC shows excellent bifunctional electrocatalytic activity with ultra-small potential gap(ΔE=E_(j=10)(OER)–E_(1/2)(ORR))of 0.72 V,which surpasses the commercial Pt/C and RuO_(2) catalysts.The theory calculation results reveal that the excellent bifunctional electrocatalytic activity can be attributed to the charge redistribution of Co of Co-N_(x) induced by the synergistic effects of well-tuned active sites of Co_(3)O_(4)-Co nanoparticle and Co-N_(x),thus optimizing the rate-determining step of the desorption of O_(2)^(*)intermediate in ORR and OH^(*)intermediate in OER.The rechargeable Zn-air batteries with our bifunctional catalysts exhibit superior performance as well as high cycling stability.This simple-effective optimization strategy offers prospects for tuning the active site of MOF derived bifunctional catalyst in electrochemical energy devices.
基金the National Natural Science Foundation of China(Nos.21603103 and U1601214)the Natural Science Foundation Committee of Jiangsu Province(No.BK20171462)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX21_0465).
文摘Designing bifunctional oxygen electrocatalysts with high activity,lasting stability,and low-cost for rechargeable zinc-air batteries(RZABs)is a tough challenge.Herein,an advanced electrocatalyst is prepared by anchoring atomically dispersed Co atoms on Ndoped graphene-like hierarchically porous carbon nanosheets(SA-Co-N4-GCs)and thereby forming Co-N4-C architecture.Its unique structure with excellent conductivity,large surface area,and three dimensional(3D)interconnected hierarchically porous architecture exposes not only more Co-N4 active sites to accelerate the kinetics of both oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),but also provides an efficient charge/mass transport environment to reduce diffusion barrier.Consequently,SA-Co-N4-GCs exhibits excellent ORR/OER bifunctional activities and durability,surpassing noble-metal catalysts.Liquid RZABs using SA-Co-N4-GCs cathodes display a high open-circuit voltage of 1.51 V,a remarkable power density of 149.3 mW·cm−2,as well as excellent stability and rechargeability with faint increase in polarization even at a large depth of charge–discharge cycle with 16 h per cycle over an entire 600 h long-term test.Moreover,flexible quasi-solid-state RZABs with SA-Co-N4-GCs cathodes also deliver a considerable power density of 124.5 mW·cm−2,which is even higher than that of liquid batteries using noble-metal catalysts.This work has thrown new insight into development of high-performance and low-cost electrocatalysts for energy conversion and storage.
文摘The activity of two Cu/SiO2 catalysts prepared by the chemisorption hydrolysis technique has been tested in the hydrogenation reaction of 3-methyl-cyclohexanone. Both catalysts were found to be very active at 60 ℃ and 1 atm of H2. Characterization of the materials by FT-IR of adsorbed CO and TEM put in light the presence of well formed Cu cristallites. By assuming a cuboctahedral model we could show that the hydrogenation activity is linked to high coordination sites on the metal particle. A comparison is also reported with a sample prepared by ammonia evaporation that was found to be inactive in the hydrogenation reaction under the same experimental conditions.
文摘An approach is suggested to distinguish different types of active sites responsible for different reactions on bifunctional catalysts.The model assumes a non-uniform vulnerability of active sites that depends on their location.Problems on the relationship between the dispersion of the active phase and selectivity are discussed.The effect of coke formation on the activity change of different sites is analyzed.
基金supported by the National Natural Science Foundation of China(Nos.52370073,12274115)Program for Science and Technology Innovation Team in Universities of Henan Province(No.24IRTSTHN017)+3 种基金Natural Science Foundation of Henan Province(No.212300410336)Program for Science and Technology Innovation Talent in Universities of Henan Province(No.23HASTIT027)Key Scientific and Technological Project of Henan Province(No.222102320188)Key Project of Science and Technology Research of Henan Provincial Department of Education(No.21A430008)。
文摘Peroxymonosulfate(PMS)activation and photocatalysis are effective technologies to remove organic pollutants,but the adsorption effect of the catalyst is usually unheeded in degradation process.Herein,a bifunctional catalyst of amorphous MoS_(x)(a-MoS_(x))with 3D layer-by-layer superstructure was synthesized by assembling basic active units[Mo_(3)S_(13)]^(2-)of MoS_(2).The large interlayer spacing and high exposure of active sites render a-MoS_(x)to have excellent synergy of adsorption and photo-assisted PMS activation for tetracycline(TC)degradation.Experiments and DFT calculation show that TC can be efficiently enriched on a-MoS_(x)by pore filling,π-πinteraction,hydrogen bonding and high adsorption energy.Subsequently,PMS can be quickly activated through electron transfer with a-MoS_(x),resulting in high TC degradation efficiency of 96.6%within 20 min.In addition,the synergistic mechanism of adsorption and photo-assisted PMS activation was explored,and the degradation pathway of TC was expounded.This work is inspirational for constructing bifunctional catalysts with superior synergistic adsorption and catalytic capabilities to remove refractory organic pollutants in water.