In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of quintic polynomial differential system are investigated. With the help of computer algebra system MATHEMAT...In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of quintic polynomial differential system are investigated. With the help of computer algebra system MATHEMATICA, the first 8 quasi Lyapunov constants are deduced. As a result, the necessary and sufficient conditions to have a center are obtained. The fact that there exist 8 small amplitude limit cycles created from the three-order nilpotent critical point is also proved. Henceforth we give a lower bound of cyclicity of three-order nilpotent critical point for quintic Lyapunov systems.展开更多
The center conditions and bifurcation of limit cycles for a class of fifth degree systems are investigated.Two recursive formulas to compute singular quantities at infinity and at the origin are given.The first nine ...The center conditions and bifurcation of limit cycles for a class of fifth degree systems are investigated.Two recursive formulas to compute singular quantities at infinity and at the origin are given.The first nine singular point quantities at infinity and first seven singular point quantities at the origin for the system are given in order to get center conditions and study bifurcation of limit cycles.Two fifth degree systems are constructed.One allows the appearance of eight limit cycles in the neighborhood of infinity,which is the first example that a polynomial differential system bifurcates eight limit cycles at infinity.The other perturbs six limit cycles at the origin.展开更多
In this paper, we study the appearance of limit cycles from the equator and isochronicity of infinity in polynomial vector fields with no singular points at infinity. We give a recursive formula to compute the singula...In this paper, we study the appearance of limit cycles from the equator and isochronicity of infinity in polynomial vector fields with no singular points at infinity. We give a recursive formula to compute the singular point quantities of a class of cubic polynomial systems, which is used to calculate the first seven singular point quantities. Further, we prove that such a cubic vector field can have maximal seven limit cycles in the neighborhood of infinity. We actually and construct a system that has seven limit cycles. The positions of these limit cycles can be given exactly without constructing the Poincare cycle fields. The technique employed in this work is essentially different from the previously widely used ones. Finally, the isochronous center conditions at infinity are given.展开更多
For the real planar autonomous differential system, the questionsof detection between center and focus, successor function, formal series, central integration, integration factor, focal values, values of singular poin...For the real planar autonomous differential system, the questionsof detection between center and focus, successor function, formal series, central integration, integration factor, focal values, values of singular point and bifurcation of limit cycles for a class of higher-degree critical points and infinite points are expounded.展开更多
基金Supported by the Natural Science Foundation of Shandong Province (Grant No. Y2007A17)
文摘In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of quintic polynomial differential system are investigated. With the help of computer algebra system MATHEMATICA, the first 8 quasi Lyapunov constants are deduced. As a result, the necessary and sufficient conditions to have a center are obtained. The fact that there exist 8 small amplitude limit cycles created from the three-order nilpotent critical point is also proved. Henceforth we give a lower bound of cyclicity of three-order nilpotent critical point for quintic Lyapunov systems.
基金Supported by Science Fund of the Education Departmentof Guangxi province( 2 0 0 3) and the NationalNatural Science Foundation of China( 1 0 361 0 0 3)
文摘The center conditions and bifurcation of limit cycles for a class of fifth degree systems are investigated.Two recursive formulas to compute singular quantities at infinity and at the origin are given.The first nine singular point quantities at infinity and first seven singular point quantities at the origin for the system are given in order to get center conditions and study bifurcation of limit cycles.Two fifth degree systems are constructed.One allows the appearance of eight limit cycles in the neighborhood of infinity,which is the first example that a polynomial differential system bifurcates eight limit cycles at infinity.The other perturbs six limit cycles at the origin.
文摘In this paper, we study the appearance of limit cycles from the equator and isochronicity of infinity in polynomial vector fields with no singular points at infinity. We give a recursive formula to compute the singular point quantities of a class of cubic polynomial systems, which is used to calculate the first seven singular point quantities. Further, we prove that such a cubic vector field can have maximal seven limit cycles in the neighborhood of infinity. We actually and construct a system that has seven limit cycles. The positions of these limit cycles can be given exactly without constructing the Poincare cycle fields. The technique employed in this work is essentially different from the previously widely used ones. Finally, the isochronous center conditions at infinity are given.
基金This work was supported by the Natural Science Foundation of Hunan Province (Grant No. 10071016) .
文摘For the real planar autonomous differential system, the questionsof detection between center and focus, successor function, formal series, central integration, integration factor, focal values, values of singular point and bifurcation of limit cycles for a class of higher-degree critical points and infinite points are expounded.