期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Big data storage technologies: a survey 被引量:17
1
作者 Aisha SIDDIQA Ahmad KARIM Abdullah GANI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第8期1040-1070,共31页
There is a great thrust in industry toward the development of more feasible and viable tools for storing fast-growing volume, velocity, and diversity of data, termed 'big data'. The structural shift of the storage m... There is a great thrust in industry toward the development of more feasible and viable tools for storing fast-growing volume, velocity, and diversity of data, termed 'big data'. The structural shift of the storage mechanism from traditional data management systems to NoSQL technology is due to the intention of fulfilling big data storage requirements. However, the available big data storage technologies are inefficient to provide consistent, scalable, and available solutions for continuously growing heterogeneous data. Storage is the preliminary process of big data analytics for real-world applications such as scientific experiments, healthcare, social networks, and e-business. So far, Amazon, Google, and Apache are some of the industry standards in providing big data storage solutions, yet the literature does not report an in-depth survey of storage technologies available for big data, investigating the performance and magnitude gains of these technologies. The primary objective of this paper is to conduct a comprehensive investigation of state-of-the-art storage technologies available for big data. A well-defined taxonomy of big data storage technologies is presented to assist data analysts and researchers in understanding and selecting a storage mecha- nism that better fits their needs. To evaluate the performance of different storage architectures, we compare and analyze the ex- isling approaches using Brewer's CAP theorem. The significance and applications of storage technologies and support to other categories are discussed. Several future research challenges are highlighted with the intention to expedite the deployment of a reliable and scalable storage system. 展开更多
关键词 big data big data storage NoSQL databases Distributed databases CAP theorem SCALABILITY Consistency-partition resilience Availability-partition resilience
原文传递
Renewable and Nonrenewable Energy Flow Resiliency for Day-to-Day Production and Consumption 被引量:2
2
作者 Bahman Zohuri Farhang Mossavar-Rahmani Masoud Moghaddam 《Journal of Energy and Power Engineering》 2022年第1期13-18,共6页
Energy resilience is about ensuring a business and end-use consumers have a reliable,regular supply of energy and contingency measures in place in the event of a power failure,generating a source of power such as elec... Energy resilience is about ensuring a business and end-use consumers have a reliable,regular supply of energy and contingency measures in place in the event of a power failure,generating a source of power such as electricity for daily needs from an uninterrupted source of energy no matter either renewable or nonrenewable.Causes of resilience issues include power surges,weather,natural disasters,or man-made accidents,and even equipment failure.The human operational error can also be an issue for grid-power supply to go down and should be factored into resilience planning.As the energy landscape undergoes a radical transformation,from a world of large,centralized coal plants to a decentralized energy world made up of small-scale gas-fired production and renewables,the stability of electricity supply will begin to affect energy pricing.Businesses must plan for this change.The challenges that the growth of renewables brings to the grid in terms of intermittency mean that transmission and distribution costs consume an increasing proportion of bills.With progress in the technology of AI(Artificial Intelligence)integration of such progressive technology in recent decades,we are improving our resiliency of energy flow,so we prevent any unexpected interruption of this flow.Ensuring your business is energy resilient helps insulate against price increases or fluctuations in supply,becoming critical to maintaining operations and reducing commercial risk.In the form short TM(Technical Memorandum),this paper covers this issue. 展开更多
关键词 Resilience system energy flow energy storage energy grid BI(business intelligence) AI cyber security decision making in real-time machine learning and deep learning BD(big data)and cloud-based servers for repository and storage of data
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部