Leakage power and propagation delay are two significant issues found in sub-micron technology-based Complementary Metal-Oxide-Semiconductor(CMOS)-based Very Large-Scale Integration(VLSI)circuit designs.Positive Channel...Leakage power and propagation delay are two significant issues found in sub-micron technology-based Complementary Metal-Oxide-Semiconductor(CMOS)-based Very Large-Scale Integration(VLSI)circuit designs.Positive Channel Metal Oxide Semiconductor(PMOS)has been replaced by Negative Channel Metal Oxide Semiconductor(NMOS)in recent years,with low dimen-sion-switching changes in order to shape the mirror of voltage comparator.NMOS is used to reduce stacking leakage as well as total exchange.Domino Logic Cir-cuit is a powerful and versatile digital programmer that gained popularity in recent years.In this study regarding Adaptive Sub Threshold Voltage Level Control Pro-blem,the researchers intend to solve the contention issues,reduce power dissipa-tion,and increase the noise immunity by proposing Adaptive Sub Threshold Voltage Level Control(ASVLC)-based domino circuit.The efficiency and effec-tiveness of the domino circuit are demonstrated through simulation results.The suggested system makes use of high-speed broad fan-gate circuits,occupies mini-mum space,and consumes meagre amount of power.The proposed circuit was validated in Cadence simulation tool at a supply voltage of 1V,frequency of 100 MHz,and an operating temperature of 27°C with 64 input OR gates.As per the simulation results,the suggested Domino Gate reduced the power dissipa-tion by 17.58 percent and improved the noise immunity by 1.21 times in compar-ison with standard domino logic circuits.展开更多
文摘Leakage power and propagation delay are two significant issues found in sub-micron technology-based Complementary Metal-Oxide-Semiconductor(CMOS)-based Very Large-Scale Integration(VLSI)circuit designs.Positive Channel Metal Oxide Semiconductor(PMOS)has been replaced by Negative Channel Metal Oxide Semiconductor(NMOS)in recent years,with low dimen-sion-switching changes in order to shape the mirror of voltage comparator.NMOS is used to reduce stacking leakage as well as total exchange.Domino Logic Cir-cuit is a powerful and versatile digital programmer that gained popularity in recent years.In this study regarding Adaptive Sub Threshold Voltage Level Control Pro-blem,the researchers intend to solve the contention issues,reduce power dissipa-tion,and increase the noise immunity by proposing Adaptive Sub Threshold Voltage Level Control(ASVLC)-based domino circuit.The efficiency and effec-tiveness of the domino circuit are demonstrated through simulation results.The suggested system makes use of high-speed broad fan-gate circuits,occupies mini-mum space,and consumes meagre amount of power.The proposed circuit was validated in Cadence simulation tool at a supply voltage of 1V,frequency of 100 MHz,and an operating temperature of 27°C with 64 input OR gates.As per the simulation results,the suggested Domino Gate reduced the power dissipa-tion by 17.58 percent and improved the noise immunity by 1.21 times in compar-ison with standard domino logic circuits.