Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite d...Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite difficult to achieve sufficient fluidity and feedability to fill the thin cavity as the wall thickness becomes less than 1mm. Therefore, in this study, thin-walled die casting of aluminum (Al-Si-Cu alloy: ALDC 12) in size of notebook computer housing and thickness of 0.8 mm was investigated by solidification simulation (MAGMA soft) and actual casting experiment (Buhler Evolution B 53D). Three different types of gating design, finger, tangential and split type with 6 vertical runners, were simulated and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt to flow into the thin cavity uniformly and split type gating system was preferable gating design comparing to tangential type gating system at the point of view of soundness of casting and distortion generated after solidification. Also, the solidification simulation agreed well with the actual die-casting and the casting showed no casting defects and distortion.展开更多
The effect of depressurizing speed on mold filling behavior and entrainment of oxide film of A356 alloy was studied. Themold filling behavior and velocity fields were recorded by water simulation with particle image v...The effect of depressurizing speed on mold filling behavior and entrainment of oxide film of A356 alloy was studied. Themold filling behavior and velocity fields were recorded by water simulation with particle image velocimetry. The results show thatthe gate velocity first increased dramatically, then changed with the depressurizing speed: the gate velocity increased slowly atrelatively high depressurizing speed; at reasonable depressurizing speed, the gate velocity kept unchanged; while at lowerdepressurizing speed, the gate velocity decreased firstly and then kept unchanged. High gate velocity results in melt falling backunder gravity at higher speed. The falling velocity is the main factor of oxide film entrainment in vacuum suction casting. The designcriterion of depressurizing rate was deduced, and the A356 alloy castings were poured to test the formula. The four-point bend testand Weibull probability plots were applied to assessing the fracture mechanisms of the as-cast A356 alloy. The results illuminate amethod on designing suitable depressurizing speed for mold filling in vacuum suction casting.展开更多
文摘Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite difficult to achieve sufficient fluidity and feedability to fill the thin cavity as the wall thickness becomes less than 1mm. Therefore, in this study, thin-walled die casting of aluminum (Al-Si-Cu alloy: ALDC 12) in size of notebook computer housing and thickness of 0.8 mm was investigated by solidification simulation (MAGMA soft) and actual casting experiment (Buhler Evolution B 53D). Three different types of gating design, finger, tangential and split type with 6 vertical runners, were simulated and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt to flow into the thin cavity uniformly and split type gating system was preferable gating design comparing to tangential type gating system at the point of view of soundness of casting and distortion generated after solidification. Also, the solidification simulation agreed well with the actual die-casting and the casting showed no casting defects and distortion.
基金Project(51375110)supported by the National Natural Science Foundation of Chain
文摘The effect of depressurizing speed on mold filling behavior and entrainment of oxide film of A356 alloy was studied. Themold filling behavior and velocity fields were recorded by water simulation with particle image velocimetry. The results show thatthe gate velocity first increased dramatically, then changed with the depressurizing speed: the gate velocity increased slowly atrelatively high depressurizing speed; at reasonable depressurizing speed, the gate velocity kept unchanged; while at lowerdepressurizing speed, the gate velocity decreased firstly and then kept unchanged. High gate velocity results in melt falling backunder gravity at higher speed. The falling velocity is the main factor of oxide film entrainment in vacuum suction casting. The designcriterion of depressurizing rate was deduced, and the A356 alloy castings were poured to test the formula. The four-point bend testand Weibull probability plots were applied to assessing the fracture mechanisms of the as-cast A356 alloy. The results illuminate amethod on designing suitable depressurizing speed for mold filling in vacuum suction casting.