The Big Bang theory states that the universe was created from pure energy, although matter, in general, is also pure energy and there is no known physical existence that is not pure energy in accordance with the mass-...The Big Bang theory states that the universe was created from pure energy, although matter, in general, is also pure energy and there is no known physical existence that is not pure energy in accordance with the mass-energy equation. All known energy is situated in a field, and it can be questioned whether also the Big Bang was situated in a field in the primordial moment it inflated into the subsequent cosmic expansion that so far lets us observe a 93-billion-light-year-wide spherical volume of the universe. In this study, the Big Bang’s gravitational influence, particularly in the form of an externally radiated gravitational wave, is considered in connection to its situation in a surrounding field with a different expansion rate than itself. The results suggest that the least possible size of the universe can be predicted by the expression of the gravitational wave produced by Big Bang, revealing that the universe has a significantly greater size than the observable, and further that Big Bang might be the production of only one of many cosmic galaxies situated together in a cosmological wave complex (CWC) where the amplitude is self-maintained by inflations.展开更多
The theory of gravitational waves in the frame of non-local quantum hydrodynamics (NLQH) is considered. From calculations follow that NLQH equations for “empty” space have the traveling wave solutions belonging in p...The theory of gravitational waves in the frame of non-local quantum hydrodynamics (NLQH) is considered. From calculations follow that NLQH equations for “empty” space have the traveling wave solutions belonging in particular to the soliton class. The possible influence and reaction of the background microwave radiation is taken into account. These results lead to the principal correction of the inflation theory and serve as the explanation for the recent discovery of the universe’s cosmic microwave background anomalies. The simple analytical particular cases and numerical calculations are delivered. Proposal for astronomers—to find in the center domain of the hefty cold spot the smallest hot spot as the origin of the initial burst—Big Bang.展开更多
文摘The Big Bang theory states that the universe was created from pure energy, although matter, in general, is also pure energy and there is no known physical existence that is not pure energy in accordance with the mass-energy equation. All known energy is situated in a field, and it can be questioned whether also the Big Bang was situated in a field in the primordial moment it inflated into the subsequent cosmic expansion that so far lets us observe a 93-billion-light-year-wide spherical volume of the universe. In this study, the Big Bang’s gravitational influence, particularly in the form of an externally radiated gravitational wave, is considered in connection to its situation in a surrounding field with a different expansion rate than itself. The results suggest that the least possible size of the universe can be predicted by the expression of the gravitational wave produced by Big Bang, revealing that the universe has a significantly greater size than the observable, and further that Big Bang might be the production of only one of many cosmic galaxies situated together in a cosmological wave complex (CWC) where the amplitude is self-maintained by inflations.
文摘The theory of gravitational waves in the frame of non-local quantum hydrodynamics (NLQH) is considered. From calculations follow that NLQH equations for “empty” space have the traveling wave solutions belonging in particular to the soliton class. The possible influence and reaction of the background microwave radiation is taken into account. These results lead to the principal correction of the inflation theory and serve as the explanation for the recent discovery of the universe’s cosmic microwave background anomalies. The simple analytical particular cases and numerical calculations are delivered. Proposal for astronomers—to find in the center domain of the hefty cold spot the smallest hot spot as the origin of the initial burst—Big Bang.