Let the elastic body only be acted by gravity. By investigating the relations of bianalytic functions and biharmonic functions, the uniqueness and existence of the stress functions (Airy functions) are established in ...Let the elastic body only be acted by gravity. By investigating the relations of bianalytic functions and biharmonic functions, the uniqueness and existence of the stress functions (Airy functions) are established in planar simple connected region. Moreover, the integral representation formula of the stress functions in the unit disk of the plane is obtained.展开更多
By using complex variable methods, the boundary value problem for biharmonic functions arisen from the theory of clamped elastic thin plate is shown to be equivalent to the first fundamental problem in plane elasticit...By using complex variable methods, the boundary value problem for biharmonic functions arisen from the theory of clamped elastic thin plate is shown to be equivalent to the first fundamental problem in plane elasticity which, as well-known, may be easily solved by reduction to a Fredholm integral equation. The case of circular plate is illustrated in detail, the solution of which is obtained in closed form.展开更多
According to the inverse solution of elasticity mechanics, a stress function is constructed which meets the space biharmonic equation, this stress functions is about cubic function pressure on the inner and outer surf...According to the inverse solution of elasticity mechanics, a stress function is constructed which meets the space biharmonic equation, this stress functions is about cubic function pressure on the inner and outer surfaces of cylinder. When borderline condition that is predigested according to the Saint-Venant's theory is joined, an equation suit is constructed which meets both the biharmonic equations and the boundary conditions. Furthermore, its analytic solution is deduced with Matlab. When this theory is applied to hydraulic bulging rollers, the experimental results inosculate with the theoretic calculation. Simultaneously, the limit along the axis invariable direction is given and the famous Lame solution can be induced from this limit. The above work paves the way for mathematic model building of hollow cylinder and for the analytic solution of hollow cvlinder with randomly uneven pressure.展开更多
A representation for the velocity and pressure fields in three-dimensional Stokes flow was presented in terms of a biharmonic function A and a harmonic function B.This representation was used to establish a general th...A representation for the velocity and pressure fields in three-dimensional Stokes flow was presented in terms of a biharmonic function A and a harmonic function B.This representation was used to establish a general theorem for the calculation of Stokes flow due to fundamental singularities in a region bounded by a stationary no-slip plane boundary.Collins's theorem for axisymmetric Stokes flow before a rigid plane follows as a special case of the theorem.A few illustrative examples are given to show its usefulness.展开更多
Non-local plane elasticity problems are discussed in the context of Λ-fractional linear elasticity theory. Adapting the Λ-fractional derivative along with the Λ-fractional space, where geometry and mechanics are va...Non-local plane elasticity problems are discussed in the context of Λ-fractional linear elasticity theory. Adapting the Λ-fractional derivative along with the Λ-fractional space, where geometry and mechanics are valid in the conventional way, non-local plane elasticity problems are solved with the help of biharmonic functions. Then, the results are transferred into the initial plane.Applications are presented to homogeneous and the fractional beam bending problem.展开更多
A general theorem for the Stokes flow over a plane boundary with mixed stick-slip boundary conditions is established. This is done by using a representation for the velocity and pressure fields in the three-dimensiona...A general theorem for the Stokes flow over a plane boundary with mixed stick-slip boundary conditions is established. This is done by using a representation for the velocity and pressure fields in the three-dimensional Stokes flow in terms of a biharmonic function and a harmonic function. The earlier theorem for the Stokes flow due to fundamental singularities before a no-slip plane boundary is shown to be a special case of the present theorem. Furthermore, in terms of the Stokes stream function, a corollary of the theorem is also derived, providing a solution to the problem of the axisymmetric Stokes flow along a rigid plane with stick-slip boundary conditions. The formulae for the drag and torque exerted by the fluid on the boundary are established. An illustrative example is given.展开更多
文摘Let the elastic body only be acted by gravity. By investigating the relations of bianalytic functions and biharmonic functions, the uniqueness and existence of the stress functions (Airy functions) are established in planar simple connected region. Moreover, the integral representation formula of the stress functions in the unit disk of the plane is obtained.
文摘By using complex variable methods, the boundary value problem for biharmonic functions arisen from the theory of clamped elastic thin plate is shown to be equivalent to the first fundamental problem in plane elasticity which, as well-known, may be easily solved by reduction to a Fredholm integral equation. The case of circular plate is illustrated in detail, the solution of which is obtained in closed form.
文摘According to the inverse solution of elasticity mechanics, a stress function is constructed which meets the space biharmonic equation, this stress functions is about cubic function pressure on the inner and outer surfaces of cylinder. When borderline condition that is predigested according to the Saint-Venant's theory is joined, an equation suit is constructed which meets both the biharmonic equations and the boundary conditions. Furthermore, its analytic solution is deduced with Matlab. When this theory is applied to hydraulic bulging rollers, the experimental results inosculate with the theoretic calculation. Simultaneously, the limit along the axis invariable direction is given and the famous Lame solution can be induced from this limit. The above work paves the way for mathematic model building of hollow cylinder and for the analytic solution of hollow cvlinder with randomly uneven pressure.
文摘A representation for the velocity and pressure fields in three-dimensional Stokes flow was presented in terms of a biharmonic function A and a harmonic function B.This representation was used to establish a general theorem for the calculation of Stokes flow due to fundamental singularities in a region bounded by a stationary no-slip plane boundary.Collins's theorem for axisymmetric Stokes flow before a rigid plane follows as a special case of the theorem.A few illustrative examples are given to show its usefulness.
文摘Non-local plane elasticity problems are discussed in the context of Λ-fractional linear elasticity theory. Adapting the Λ-fractional derivative along with the Λ-fractional space, where geometry and mechanics are valid in the conventional way, non-local plane elasticity problems are solved with the help of biharmonic functions. Then, the results are transferred into the initial plane.Applications are presented to homogeneous and the fractional beam bending problem.
文摘A general theorem for the Stokes flow over a plane boundary with mixed stick-slip boundary conditions is established. This is done by using a representation for the velocity and pressure fields in the three-dimensional Stokes flow in terms of a biharmonic function and a harmonic function. The earlier theorem for the Stokes flow due to fundamental singularities before a no-slip plane boundary is shown to be a special case of the present theorem. Furthermore, in terms of the Stokes stream function, a corollary of the theorem is also derived, providing a solution to the problem of the axisymmetric Stokes flow along a rigid plane with stick-slip boundary conditions. The formulae for the drag and torque exerted by the fluid on the boundary are established. An illustrative example is given.