Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD...Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD) technology in the treatment of chronic wounds. Method: From June 2021 to December 2023, our hospital treated 24 patients with chronic skin tissue wounds on their limbs using a novel tissue engineering product, the bilayer artificial dermis, in combination with VSD technology to repair the wounds. The bilayer artificial dermis protects subcutaneous tissue, blood vessels, nerves, muscles, and tendons, and also promotes the growth of granulation tissue and blood vessels to aid in wound healing when used in conjunction with VSD technology for wound dressing changes in chronic wounds. Results: In this study, 24 cases of chronic wounds with exposed bone or tendon larger than 1.0 cm2 were treated with a bilayer artificial skin combined with VSD dressing after wound debridement. The wounds were not suitable for immediate skin grafting. At 2 - 3 weeks post-treatment, good granulation tissue growth was observed. Subsequent procedures included thick skin grafting or wound dressing changes until complete wound healing. Patients were followed up on average for 3 months (range: 1 - 12 months) post-surgery. Comparative analysis of the appearance, function, skin color, elasticity, and sensation of the healed chronic wounds revealed superior outcomes compared to traditional skin fl repairs, resulting in significantly higher satisfaction levels among patients and their families. Conclusion: The application of bilayer artificial dermis combined with VSD technology for the repair of chronic wounds proves to be a viable method, yielding satisfactory therapeutic effects compared to traditional skin flap procedures.展开更多
We study the valley-dependent electron transport in a four-terminal mesoscopic device of the two monolayer graphene nanoribbons vertically stacked together, where the intersection forms a bilayer graphene lattice with...We study the valley-dependent electron transport in a four-terminal mesoscopic device of the two monolayer graphene nanoribbons vertically stacked together, where the intersection forms a bilayer graphene lattice with a controllable twist angle. Using a tight-binding lattice model, we show that the longitudinal and transverse conductances exhibit significant valley polarization in the low energy regime for small twist angles. As the twist angle increases, the valley polarization shifts to the high energy regime. This arises from the regrouping effect of the electron band in the twisted bilayer graphene region. But for relatively large twist angles, no significant valley polarization is observed. These results are consistent with the spectral densities of the twisted bilayer graphene.展开更多
Thermal-electric bilayer invisibility cloak can prevent the heat flux and electric current from touching the object without distorting the external temperature and electric potential fields simultaneously.In this pape...Thermal-electric bilayer invisibility cloak can prevent the heat flux and electric current from touching the object without distorting the external temperature and electric potential fields simultaneously.In this paper,we design an omnidirectional thermal-electric invisibility cloak with anisotropic geometry.Based on the theory of neutral inclusion,the anisotropic effective thermal and electric conductivities of confocal elliptical bilayer core-shell structure are derived,thus obtaining the anisotropic matrix material to eliminate the external disturbances omnidirectionally.The inner shell of the cloak is selected as an insulating material to shield the heat flux and electric current.Then,the omnidirectional thermal-electric cloaking effect is verified numerically and experimentally based on the theoretical anisotropic matrix and manufactured composite structure,respectively.Furthermore,we achieve the thermal-electric cloaking effect under a specific direction of heat flux and electric current using the isotropic natural materials to broaden the selection range of materials.The method proposed to eliminate anisotropy and achieve the omnidirectional effect could also be expanded to other different physical fields for the metadevices with different functions.展开更多
Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,...Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,the molecular mechanism underlying the interactions between nucleic acids and phospholipid bilayers within LNPs remains elusive.In this study,we employed the all-atom molecular dynamics simulation to investigate the interactions between single-stranded nucleic acids and a phospholipid bilayer.Our findings revealed that hydrophilic bases,specifically G in single-stranded RNA(ssRNA)and single-stranded DNA(ssDNA),displayed a higher propensity to form hydrogen bonds with phospholipid head groups.Notably,ssRNA exhibited stronger binding energy than ssDNA.Furthermore,divalent ions,particularly Ca2+,facilitated the binding of ssRNA to phospholipids due to their higher binding energy and lower dissociation rate from phospholipids.Overall,our study provides valuable insights into the molecular mechanisms underlying nucleic acidphospholipid interactions,with potential implications for the nucleic acids in biotherapies,particularly in the context of lipid carriers.展开更多
Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field.In this study,we conduct a theoretical investigation of the potential pair...Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field.In this study,we conduct a theoretical investigation of the potential pairing symmetry within this superconducting system.By developing a theoretical model,we primarily calculate the free energy of the system with p+ip-wave parallel spin pairing,p+ip-wave anti-parallel spin pairing and d+i d-wave pairing symmetry.Our results confirm that the magnetic field is indeed essential for generating the superconductivity.We discover that the p+ip-wave parallel spin pairing leads to a lower free energy for the system.The numerical calculations of the energy band structure,zero-energy spectral function and density of states for each of the three pairing symmetries under consideration show a strong consistency with the free energy results.展开更多
We study the friction properties of interlayer bonded bilayer graphene by simulating the movement of a slider on the surface of bilayer graphene using molecular dynamics.The results show that the presence of the inter...We study the friction properties of interlayer bonded bilayer graphene by simulating the movement of a slider on the surface of bilayer graphene using molecular dynamics.The results show that the presence of the interlayer covalent bonds due to the local sp^(3) hybridization of carbon atoms in the bilayer graphene seriously reduces the frictional coefficient of the bilayer graphene surface to 30%,depending on the coverage of interlayer sp^(3) bonds and normal loads.For a certain coverage of interlayer sp3bonds,when the normal load of the slider reaches a certain value,the surface of this interlayer bonded bilayer graphene will lose the friction reduction effect on the slider.Our findings provide guidance for the regulation and manipulation of the frictional properties of bilayer graphene surfaces through interlayer covalent bonds,which may be useful for applications of friction related graphene based nanodevices.展开更多
A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Mont...A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Monte Carlo simulations,we present a theoretical proposal for a stacking-dependent exchange bias in two-dimensional compensated van der Waals ferromagnetic/antiferromagnetic bilayer heterostructures. The exchange bias effect emerges in stacking registries that accommodate inhomogeneous interlayer magnetic interactions between the ferromagnetic layer and different spin sublattices of the antiferromagnetic layer. Moreover, the on/off switching and polarity reversal of the exchange bias can be achieved by interlayer sliding, and the strength can be modulated using an external electric field. Our findings push the limits of exchange bias systems to extreme bilayer thickness in two-dimensional van der Waals heterostructures, potentially stimulating new experimental investigations and applications.展开更多
Aqueous zinc(Zn)batteries with Zn metal anodes are promising clean energy storage devices with intrinsic safety and low cost.However,Zn dendrite growth severely restricts the use of Zn anodes.To effectively suppress Z...Aqueous zinc(Zn)batteries with Zn metal anodes are promising clean energy storage devices with intrinsic safety and low cost.However,Zn dendrite growth severely restricts the use of Zn anodes.To effectively suppress Zn dendrite growth,we propose a bilayer separator consisting of commercial butter paper and glassfiber membrane.The dense cellulose-based butter paper(BP)with low zincophilicity and high mechanical properties prevents the pore-filling behavior of deposited Zn and related separator piercing,effectively suppressing the Zn dendrite growth.As a result,the bilayer separators endow the ZnjjZn symmetrical batteries with a superlong cycling life of Zn anodes(over 5000 h)at 0.5 mA cm^(-2) and the full batteries enhanced capacity retention,demonstrating the advancement of the bilayer separator to afford excellent cyclability of aqueous metal batteries.展开更多
Twisted bilayer graphene(TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices.Here we report the synthesis and characterization of 300 TBG naturall...Twisted bilayer graphene(TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices.Here we report the synthesis and characterization of 300 TBG naturally grown on Cu_(0.75)Ni_(0.25)(111) film and investigate the electronic structure by angle-resolved photoemission spectroscopy.Compared with other substrates,our TBG with a wafer scale is acquired with a shorter growth time.The Fermi velocity and energy gap of Dirac cones of TBG are comparable with those of a monolayer on Cu_(0.85)Ni_(0.15)(111).The signature of moré lattices has not been observed in either the low-energy electron diffraction patterns or the Fermi surface map within experimental resolution,possibly due to different Cu and Ni contents in the substrates enhancing the different couplings between the substrate and the first/second layers and hindering the formation of a quasiperiodic structure.展开更多
We described ferromagnetic film and bilayer films composed of two ferromagnetic layers coupled through antiferromagnetic interfacial interaction by classical Heisenberg model and simulated their magnetization state,ma...We described ferromagnetic film and bilayer films composed of two ferromagnetic layers coupled through antiferromagnetic interfacial interaction by classical Heisenberg model and simulated their magnetization state,magnetic permeability,and Faraday effect at zero and finite temperature by using the Landau–Lifshitz–Gilbert(LLG)equation.The results indicate that in a microwave field with positive circular polarization,the ferromagnetic film has one resonance peak while the bilayer film has two resonance peaks.However,the resonance peak disappears in ferromagnetic film,and only one resonance peak emerges in bilayer film in the negative circularly polarized microwave field.When the microwave field’s frequency exceeds the film’s resonance frequency,the Faraday rotation angle of the ferromagnetic film is the greatest,and it decreases when the thickness of the two halves of the bilayer is reduced.When the microwave field’s frequency remains constant,the Faraday rotation angle fluctuates with temperature in the same manner as spontaneous magnetization does.When a DC magnetic field is applied in the direction of the anisotropic axis of the film,the Faraday rotation angle varies with the DC magnetic field and shows a similar shape of the hysteresis loop.展开更多
Effective calcium(Ca)management is crucial for optimizing oil palm cultivation and enhancing crop yield.This study aimed to gain insights into the dynamics of Ca concentration,accumulation,exportation,immobilization,a...Effective calcium(Ca)management is crucial for optimizing oil palm cultivation and enhancing crop yield.This study aimed to gain insights into the dynamics of Ca concentration,accumulation,exportation,immobilization,and recycling in various oil palm organs relative to plant age.The experiment was conducted at the Agropalma enterprise site in the northeastern region of Para State,Brazil,evaluating seven plant age treatments:2,3,4,5,6,7,and 8 years old.Employing a completely randomized design with four replications.The results demonstrated an age-related increase in Ca concentration in petioles,rachis,arrows,male inflorescences,peduncles,and fruits.Furthermore,Ca accumulation exhibited an upward trend in all organs with progressing plant age.Notably,the study revealed an enhanced Ca use efficiency across all plant organs in correlation with the age of oil palm cultivation.These findings underscore the dynamic nutritional demands of oil palm,influencing Ca immobilization,cycling,and export throughout its developmental stages.展开更多
A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and c...A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and carrier mobility of the hole transport layer (HTL) and emission layer (EML) in bilayer OLEDs of the structure anode/HTL/EML/cathode are numerically investigated.It is found that,for given values of the total thickness of organic layers,reduced depth of trap,total density of trap,and carrier mobility of HTL as well as EML,there exists an optimal thickness ratio of HTL to EML,by which a maximal quantum efficiency can be achieved.Through optimization of the thickness ratio,an enhancement of current density and quantum efficiency of as much as two orders of magnitude can be obtained.The dependences of the optimal thickness ratio to the characteristic trap energy,total density of trap and carrier mobility are numerically analyzed.展开更多
Aim In this study, compound metformin/glipizide bilayer extended release tablets were formulated with hydroxypropyl methylcellulose (HPMC) by wet granulation technique in order to tackle the problems associated with...Aim In this study, compound metformin/glipizide bilayer extended release tablets were formulated with hydroxypropyl methylcellulose (HPMC) by wet granulation technique in order to tackle the problems associated with the muhidrug therapy of non-insulin dependent diabetes mellitus. Me^ls High-dose metformin is difficult to formulate into a tablet dosage form due to its poor compressibility and compactibility. In this study, the way to overcome the difficulty was to utilize stearic alcohol to prepare the tablet formulation. The influences of viscosity, amount of HPMC, and weight of fillers were investigated. The optimal formulation had acceptable physicochemical properties and released metformin and glipizide over 10 h. Results The data of metformin obtained from in vitro release fitted Higuchi kinetics best, while the release of glipizide in vitro was found to follow zero kinetics. Conclusion Compound metformin/glipizide bilayer extended release tablets have been successfully developed.展开更多
An organic thin-film transistor (OTFT) with an OTS/SiO2 bilayer gate insulator and a MoO3/AI electrode configuration between gate insulator and source/drain electrodes has been investigated. A thermally grown SiO2 l...An organic thin-film transistor (OTFT) with an OTS/SiO2 bilayer gate insulator and a MoO3/AI electrode configuration between gate insulator and source/drain electrodes has been investigated. A thermally grown SiO2 layer is used as the OTFT gate dielectric and copper phthalocyanine(CuPc) is used as an active layer. This OTS/SiO2 bilayer gate insulator configuration increases the field-effect mobility, reduces the threshold voltage, and improves the on/off ratio simultaneously. The device with a MoO3/Al electrode has shown similar Ids compared to the device with an Au electrode at the same gate voltage. Our results indicate that using a double-layer of electrodes and a double-layer of insulators is an effective way to improve OTFT performance.展开更多
The microbial immobilization method using polyvinyl alcohol (PVA) gel as an immobilizing material was improved and used for entrapment of activated sludge. The oxygen uptake rate (OUR) was used to characterize the...The microbial immobilization method using polyvinyl alcohol (PVA) gel as an immobilizing material was improved and used for entrapment of activated sludge. The oxygen uptake rate (OUR) was used to characterize the biological activity of immobilized activated sludge. Three kinds of PVA-immobilized particles of activated sludge, that is, PVA-boric acid beads, PVA-sodium nitrate beads and PVA-orthophosphate beads were prepared, and their biological activity was compared by measuring the OUR value. The bioactivity of both autotrophic and heterotrophic microorganisms of activated sludge was determined using different synthetic wastewater media (containing 250 mg/L COD and 25 mg/L NH4^+ -N). The experimental results showed that the bioactivity and stability of the three kinds of immobilized activated sludge was greatly improved after activation. With respect of the bioactivity and the mechanical stability, the PVA-orthophosphate method may be a promising and economical technique for microbial immobilization.展开更多
Activated sludge was immobilized into Ca-alginate beads via entrapment, and biosorption of three heavy metal ions, copper(Ⅱ), zinc(Ⅱ), and chromimum(Ⅱ), from aqueous solution in the concentration range of 10\_100 m...Activated sludge was immobilized into Ca-alginate beads via entrapment, and biosorption of three heavy metal ions, copper(Ⅱ), zinc(Ⅱ), and chromimum(Ⅱ), from aqueous solution in the concentration range of 10\_100 mg/L was studied by using both entrapped activated sludge and inactivated free biomass at pH≤5. A biphasic metal adsorption pattern was observed in all immobilized biomass experiments. The biosorption of metal ions by the biosorbents increased with the initial concentration increased in the medium. The adsorption rate of immobilized pre-treated activated sludge(PAS) was much lower than that of free PAS due to the increase in mass transfer resistance resulting from the polymeric matrix. Biosorption equilibrium of beads was established in about 20 h and the adsorbed heavy metal ions did not change further with time. No significant effect of temperature was observed in the test for free biomass while immobilized PAS appeared to be strong temperature dependent in the test range of 10 and 40℃. Besides, the content of activated sludge in the calcium alginate bead has an influence on the uptake of heavy metals. The sorption equilibrium was well modeled by Langmuir isotherm, implying monomolecular adsorption mechanism. Carboxyl group in cell wall played an important role in surface adsorption of heavy metal ions on PAS.展开更多
The plant cellulose powder was activated by two different methods using 1,4-butanediol diglycidyl ether(BTDE)and 1,1′-Carbonyldiimidazole(CDI) as the chemical coupling agents.Organophosphorus hydrolase(OPH) from Flav...The plant cellulose powder was activated by two different methods using 1,4-butanediol diglycidyl ether(BTDE)and 1,1′-Carbonyldiimidazole(CDI) as the chemical coupling agents.Organophosphorus hydrolase(OPH) from Flavobacterium ATCC 27551 was immobilized on any of activated support through covalent bonding.The optimal conditions of affecting parameters on enzyme immobilization in both methods were found, and it was demonstrated that the highest activity yields of immobilized OPH onto epoxy and CDI treated cellulose were 68.32%and 73.51%, respectively.The surface treatment of cellulose via covalent coupling with BTDE and CDI agents was proved by FTIR analysis.The kinetic constants of the free and immobilized enzymes were determined, and it was showed that both immobilization techniques moderately increased the Kmvalue of the free OPH.The improvements in storage and thermal stability were investigated and depicted that the half-life of immobilized OPH over the surface of epoxy modified cellulose had a better growth compared to the free and immobilized enzymes onto CDI treated support.Also, the pH stability of the immobilized preparations was enhanced relative to the free counterpart and revealed that all enzyme samples would have the same optimum pH value for stability at 9.0.Additionally, the immobilized OPH onto epoxy and CDI activated cellulose retained about 59% and 68% of their initial activity after ten turns of batch operation, respectively.The results demonstrated the high performance of OPH enzyme in immobilized state onto an inexpensive support with the potential of industrial applications.展开更多
Aim: To examine if the seed extracts of Carica papaya, which showed anfispermatogenic/sperm immobilizationproperties in animal models, could cause human sperm immobilization in vitro. Methods: Chloroform extract, ben-...Aim: To examine if the seed extracts of Carica papaya, which showed anfispermatogenic/sperm immobilizationproperties in animal models, could cause human sperm immobilization in vitro. Methods: Chloroform extract, ben-zene chromatographic fraction of the chloroform extract, its methanol and ethyl acetate sub-fractions and the isolatedcompounds from the sub-fractions i. e., ECP 1 & 2 and MCP 1 & 2, of the seeds of Carica papaya were used at con-centrations of 0.1%, 0.5%, 1% and 2%. Sperm motility was assessed immediately after addition of extracts and ev-ery 5 minutes thereafter for 30 minutes. Results: There were dose-dependent spermicidal effects showing an instantfall in the sperm motility to less than 20% at 2% concentration. Isolated compounds ECP 1 & 2 were more effective in-ducing a motility of less than 10%. Many of the spermatozoa became vibratory on the spot. Total inhibition of motilitywas observed within 20-25 rain at all concentrations of all products. Scanning and transmission electron microscopyrevealed deleterious changes in the plasma membrane of the head and mid-piece of spermatozoa. Sperm viability testand the number of abnormal spermatozoa after completion of incubation suggested that the spermatozoa were infertile.The effects were spermicidal but not spermiostatic as revealed by the sperm revival test. Conclusion: The results re-veal spermicidal activity in vitro of the seed extracts of Carica papaya.展开更多
Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide beating wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and po...Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide beating wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sul- fide-beating wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neu- tralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment (t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sul- fate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.展开更多
First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic prope...First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic properties of twodimensional transition metal dichalcogenides(TMDCs) with the formula of MX2(M = Mo, W; X = O, S, Se, Te) in both monolayer and bilayer structures. The calculated band structures show a direct band gap for monolayer TMDCs at the K point except for MoO2 and WO2. When the monolayers are stacked into a bilayer, the reduced indirect band gaps are found except for bilayer WTe2, in which the direct gap is still present at the K point. The calculated in-plane Young moduli are comparable to that of graphene, which promises possible application of TMDCs in future flexible and stretchable electronic devices. We also evaluated the performance of different functionals including LDA, PBE, and opt B88-vd W in describing elastic moduli of TMDCs and found that LDA seems to be the most qualified method. Moreover, our calculations suggest that the Young moduli for bilayers are insensitive to stacking orders and the mechanical coupling between monolayers seems to be negligible.展开更多
文摘Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD) technology in the treatment of chronic wounds. Method: From June 2021 to December 2023, our hospital treated 24 patients with chronic skin tissue wounds on their limbs using a novel tissue engineering product, the bilayer artificial dermis, in combination with VSD technology to repair the wounds. The bilayer artificial dermis protects subcutaneous tissue, blood vessels, nerves, muscles, and tendons, and also promotes the growth of granulation tissue and blood vessels to aid in wound healing when used in conjunction with VSD technology for wound dressing changes in chronic wounds. Results: In this study, 24 cases of chronic wounds with exposed bone or tendon larger than 1.0 cm2 were treated with a bilayer artificial skin combined with VSD dressing after wound debridement. The wounds were not suitable for immediate skin grafting. At 2 - 3 weeks post-treatment, good granulation tissue growth was observed. Subsequent procedures included thick skin grafting or wound dressing changes until complete wound healing. Patients were followed up on average for 3 months (range: 1 - 12 months) post-surgery. Comparative analysis of the appearance, function, skin color, elasticity, and sensation of the healed chronic wounds revealed superior outcomes compared to traditional skin fl repairs, resulting in significantly higher satisfaction levels among patients and their families. Conclusion: The application of bilayer artificial dermis combined with VSD technology for the repair of chronic wounds proves to be a viable method, yielding satisfactory therapeutic effects compared to traditional skin flap procedures.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174051 and 11874221)。
文摘We study the valley-dependent electron transport in a four-terminal mesoscopic device of the two monolayer graphene nanoribbons vertically stacked together, where the intersection forms a bilayer graphene lattice with a controllable twist angle. Using a tight-binding lattice model, we show that the longitudinal and transverse conductances exhibit significant valley polarization in the low energy regime for small twist angles. As the twist angle increases, the valley polarization shifts to the high energy regime. This arises from the regrouping effect of the electron band in the twisted bilayer graphene region. But for relatively large twist angles, no significant valley polarization is observed. These results are consistent with the spectral densities of the twisted bilayer graphene.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.11572090)the Fundamental Research Funds for the Central Universities(Grant No.3072022GIP0202).
文摘Thermal-electric bilayer invisibility cloak can prevent the heat flux and electric current from touching the object without distorting the external temperature and electric potential fields simultaneously.In this paper,we design an omnidirectional thermal-electric invisibility cloak with anisotropic geometry.Based on the theory of neutral inclusion,the anisotropic effective thermal and electric conductivities of confocal elliptical bilayer core-shell structure are derived,thus obtaining the anisotropic matrix material to eliminate the external disturbances omnidirectionally.The inner shell of the cloak is selected as an insulating material to shield the heat flux and electric current.Then,the omnidirectional thermal-electric cloaking effect is verified numerically and experimentally based on the theoretical anisotropic matrix and manufactured composite structure,respectively.Furthermore,we achieve the thermal-electric cloaking effect under a specific direction of heat flux and electric current using the isotropic natural materials to broaden the selection range of materials.The method proposed to eliminate anisotropy and achieve the omnidirectional effect could also be expanded to other different physical fields for the metadevices with different functions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12222506,12347102,and 12174184).
文摘Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,the molecular mechanism underlying the interactions between nucleic acids and phospholipid bilayers within LNPs remains elusive.In this study,we employed the all-atom molecular dynamics simulation to investigate the interactions between single-stranded nucleic acids and a phospholipid bilayer.Our findings revealed that hydrophilic bases,specifically G in single-stranded RNA(ssRNA)and single-stranded DNA(ssDNA),displayed a higher propensity to form hydrogen bonds with phospholipid head groups.Notably,ssRNA exhibited stronger binding energy than ssDNA.Furthermore,divalent ions,particularly Ca2+,facilitated the binding of ssRNA to phospholipids due to their higher binding energy and lower dissociation rate from phospholipids.Overall,our study provides valuable insights into the molecular mechanisms underlying nucleic acidphospholipid interactions,with potential implications for the nucleic acids in biotherapies,particularly in the context of lipid carriers.
基金Project supported by the National Natural Science Foundation of China (Grant No.12074130)the Natural Science Foundation of Guangdong Province (Grant No.2021A1515012340)。
文摘Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field.In this study,we conduct a theoretical investigation of the potential pairing symmetry within this superconducting system.By developing a theoretical model,we primarily calculate the free energy of the system with p+ip-wave parallel spin pairing,p+ip-wave anti-parallel spin pairing and d+i d-wave pairing symmetry.Our results confirm that the magnetic field is indeed essential for generating the superconductivity.We discover that the p+ip-wave parallel spin pairing leads to a lower free energy for the system.The numerical calculations of the energy band structure,zero-energy spectral function and density of states for each of the three pairing symmetries under consideration show a strong consistency with the free energy results.
基金supported by the Doctor Fund and the Program of independent Research for Young Teachers of Yanshan University (Grant Nos.B919 and 020000534)。
文摘We study the friction properties of interlayer bonded bilayer graphene by simulating the movement of a slider on the surface of bilayer graphene using molecular dynamics.The results show that the presence of the interlayer covalent bonds due to the local sp^(3) hybridization of carbon atoms in the bilayer graphene seriously reduces the frictional coefficient of the bilayer graphene surface to 30%,depending on the coverage of interlayer sp^(3) bonds and normal loads.For a certain coverage of interlayer sp3bonds,when the normal load of the slider reaches a certain value,the surface of this interlayer bonded bilayer graphene will lose the friction reduction effect on the slider.Our findings provide guidance for the regulation and manipulation of the frictional properties of bilayer graphene surfaces through interlayer covalent bonds,which may be useful for applications of friction related graphene based nanodevices.
基金Project supported by the National Key Research and Development Program of China (Grant No.2019YFA0210004)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB30000000)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.WK3510000013)the National Supercomputing Center in Tianjin。
文摘A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Monte Carlo simulations,we present a theoretical proposal for a stacking-dependent exchange bias in two-dimensional compensated van der Waals ferromagnetic/antiferromagnetic bilayer heterostructures. The exchange bias effect emerges in stacking registries that accommodate inhomogeneous interlayer magnetic interactions between the ferromagnetic layer and different spin sublattices of the antiferromagnetic layer. Moreover, the on/off switching and polarity reversal of the exchange bias can be achieved by interlayer sliding, and the strength can be modulated using an external electric field. Our findings push the limits of exchange bias systems to extreme bilayer thickness in two-dimensional van der Waals heterostructures, potentially stimulating new experimental investigations and applications.
基金supported by grants from the National Key Research and Development Program of China(No.2021YFF0500600)the Haihe Laboratory of Sustainable Chemical Transformations,and the Fundamental Research Funds for the Central Universities.We appreciate Neware Technology Co.,Ltd for their battery test systems in the TJU Nanoyang-Neware Joint Laboratory for Energy Innovation.
文摘Aqueous zinc(Zn)batteries with Zn metal anodes are promising clean energy storage devices with intrinsic safety and low cost.However,Zn dendrite growth severely restricts the use of Zn anodes.To effectively suppress Zn dendrite growth,we propose a bilayer separator consisting of commercial butter paper and glassfiber membrane.The dense cellulose-based butter paper(BP)with low zincophilicity and high mechanical properties prevents the pore-filling behavior of deposited Zn and related separator piercing,effectively suppressing the Zn dendrite growth.As a result,the bilayer separators endow the ZnjjZn symmetrical batteries with a superlong cycling life of Zn anodes(over 5000 h)at 0.5 mA cm^(-2) and the full batteries enhanced capacity retention,demonstrating the advancement of the bilayer separator to afford excellent cyclability of aqueous metal batteries.
基金Project supported by the National Key R&D Program of China (Grant Nos. 2022YFB3608000 and 2022YFA1204900)the National Natural Science Foundation of China (Grant Nos. 12222413 and 12074205)+2 种基金the Natural Science Foundation of Shanghai (Grant Nos. 23ZR1482200 and 22ZR1473300)the Natural Science Foundation of Zhejiang Province (Grant No. LQ21A040004)the funding of Ningbo University (Grant No. LJ2024003)。
文摘Twisted bilayer graphene(TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices.Here we report the synthesis and characterization of 300 TBG naturally grown on Cu_(0.75)Ni_(0.25)(111) film and investigate the electronic structure by angle-resolved photoemission spectroscopy.Compared with other substrates,our TBG with a wafer scale is acquired with a shorter growth time.The Fermi velocity and energy gap of Dirac cones of TBG are comparable with those of a monolayer on Cu_(0.85)Ni_(0.15)(111).The signature of moré lattices has not been observed in either the low-energy electron diffraction patterns or the Fermi surface map within experimental resolution,possibly due to different Cu and Ni contents in the substrates enhancing the different couplings between the substrate and the first/second layers and hindering the formation of a quasiperiodic structure.
基金the Research Program of Shenyang Institute of Science and Technology(Grant No.ZD-2024-05).
文摘We described ferromagnetic film and bilayer films composed of two ferromagnetic layers coupled through antiferromagnetic interfacial interaction by classical Heisenberg model and simulated their magnetization state,magnetic permeability,and Faraday effect at zero and finite temperature by using the Landau–Lifshitz–Gilbert(LLG)equation.The results indicate that in a microwave field with positive circular polarization,the ferromagnetic film has one resonance peak while the bilayer film has two resonance peaks.However,the resonance peak disappears in ferromagnetic film,and only one resonance peak emerges in bilayer film in the negative circularly polarized microwave field.When the microwave field’s frequency exceeds the film’s resonance frequency,the Faraday rotation angle of the ferromagnetic film is the greatest,and it decreases when the thickness of the two halves of the bilayer is reduced.When the microwave field’s frequency remains constant,the Faraday rotation angle fluctuates with temperature in the same manner as spontaneous magnetization does.When a DC magnetic field is applied in the direction of the anisotropic axis of the film,the Faraday rotation angle varies with the DC magnetic field and shows a similar shape of the hysteresis loop.
文摘Effective calcium(Ca)management is crucial for optimizing oil palm cultivation and enhancing crop yield.This study aimed to gain insights into the dynamics of Ca concentration,accumulation,exportation,immobilization,and recycling in various oil palm organs relative to plant age.The experiment was conducted at the Agropalma enterprise site in the northeastern region of Para State,Brazil,evaluating seven plant age treatments:2,3,4,5,6,7,and 8 years old.Employing a completely randomized design with four replications.The results demonstrated an age-related increase in Ca concentration in petioles,rachis,arrows,male inflorescences,peduncles,and fruits.Furthermore,Ca accumulation exhibited an upward trend in all organs with progressing plant age.Notably,the study revealed an enhanced Ca use efficiency across all plant organs in correlation with the age of oil palm cultivation.These findings underscore the dynamic nutritional demands of oil palm,influencing Ca immobilization,cycling,and export throughout its developmental stages.
文摘A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and carrier mobility of the hole transport layer (HTL) and emission layer (EML) in bilayer OLEDs of the structure anode/HTL/EML/cathode are numerically investigated.It is found that,for given values of the total thickness of organic layers,reduced depth of trap,total density of trap,and carrier mobility of HTL as well as EML,there exists an optimal thickness ratio of HTL to EML,by which a maximal quantum efficiency can be achieved.Through optimization of the thickness ratio,an enhancement of current density and quantum efficiency of as much as two orders of magnitude can be obtained.The dependences of the optimal thickness ratio to the characteristic trap energy,total density of trap and carrier mobility are numerically analyzed.
文摘Aim In this study, compound metformin/glipizide bilayer extended release tablets were formulated with hydroxypropyl methylcellulose (HPMC) by wet granulation technique in order to tackle the problems associated with the muhidrug therapy of non-insulin dependent diabetes mellitus. Me^ls High-dose metformin is difficult to formulate into a tablet dosage form due to its poor compressibility and compactibility. In this study, the way to overcome the difficulty was to utilize stearic alcohol to prepare the tablet formulation. The influences of viscosity, amount of HPMC, and weight of fillers were investigated. The optimal formulation had acceptable physicochemical properties and released metformin and glipizide over 10 h. Results The data of metformin obtained from in vitro release fitted Higuchi kinetics best, while the release of glipizide in vitro was found to follow zero kinetics. Conclusion Compound metformin/glipizide bilayer extended release tablets have been successfully developed.
文摘An organic thin-film transistor (OTFT) with an OTS/SiO2 bilayer gate insulator and a MoO3/AI electrode configuration between gate insulator and source/drain electrodes has been investigated. A thermally grown SiO2 layer is used as the OTFT gate dielectric and copper phthalocyanine(CuPc) is used as an active layer. This OTS/SiO2 bilayer gate insulator configuration increases the field-effect mobility, reduces the threshold voltage, and improves the on/off ratio simultaneously. The device with a MoO3/Al electrode has shown similar Ids compared to the device with an Au electrode at the same gate voltage. Our results indicate that using a double-layer of electrodes and a double-layer of insulators is an effective way to improve OTFT performance.
基金Project supported by the National Natural Science Foundation of China(No.50327802,50325824,50678089).
文摘The microbial immobilization method using polyvinyl alcohol (PVA) gel as an immobilizing material was improved and used for entrapment of activated sludge. The oxygen uptake rate (OUR) was used to characterize the biological activity of immobilized activated sludge. Three kinds of PVA-immobilized particles of activated sludge, that is, PVA-boric acid beads, PVA-sodium nitrate beads and PVA-orthophosphate beads were prepared, and their biological activity was compared by measuring the OUR value. The bioactivity of both autotrophic and heterotrophic microorganisms of activated sludge was determined using different synthetic wastewater media (containing 250 mg/L COD and 25 mg/L NH4^+ -N). The experimental results showed that the bioactivity and stability of the three kinds of immobilized activated sludge was greatly improved after activation. With respect of the bioactivity and the mechanical stability, the PVA-orthophosphate method may be a promising and economical technique for microbial immobilization.
文摘Activated sludge was immobilized into Ca-alginate beads via entrapment, and biosorption of three heavy metal ions, copper(Ⅱ), zinc(Ⅱ), and chromimum(Ⅱ), from aqueous solution in the concentration range of 10\_100 mg/L was studied by using both entrapped activated sludge and inactivated free biomass at pH≤5. A biphasic metal adsorption pattern was observed in all immobilized biomass experiments. The biosorption of metal ions by the biosorbents increased with the initial concentration increased in the medium. The adsorption rate of immobilized pre-treated activated sludge(PAS) was much lower than that of free PAS due to the increase in mass transfer resistance resulting from the polymeric matrix. Biosorption equilibrium of beads was established in about 20 h and the adsorbed heavy metal ions did not change further with time. No significant effect of temperature was observed in the test for free biomass while immobilized PAS appeared to be strong temperature dependent in the test range of 10 and 40℃. Besides, the content of activated sludge in the calcium alginate bead has an influence on the uptake of heavy metals. The sorption equilibrium was well modeled by Langmuir isotherm, implying monomolecular adsorption mechanism. Carboxyl group in cell wall played an important role in surface adsorption of heavy metal ions on PAS.
基金Supported by the Malek-Ashtar University of Technology(925826018,2015)
文摘The plant cellulose powder was activated by two different methods using 1,4-butanediol diglycidyl ether(BTDE)and 1,1′-Carbonyldiimidazole(CDI) as the chemical coupling agents.Organophosphorus hydrolase(OPH) from Flavobacterium ATCC 27551 was immobilized on any of activated support through covalent bonding.The optimal conditions of affecting parameters on enzyme immobilization in both methods were found, and it was demonstrated that the highest activity yields of immobilized OPH onto epoxy and CDI treated cellulose were 68.32%and 73.51%, respectively.The surface treatment of cellulose via covalent coupling with BTDE and CDI agents was proved by FTIR analysis.The kinetic constants of the free and immobilized enzymes were determined, and it was showed that both immobilization techniques moderately increased the Kmvalue of the free OPH.The improvements in storage and thermal stability were investigated and depicted that the half-life of immobilized OPH over the surface of epoxy modified cellulose had a better growth compared to the free and immobilized enzymes onto CDI treated support.Also, the pH stability of the immobilized preparations was enhanced relative to the free counterpart and revealed that all enzyme samples would have the same optimum pH value for stability at 9.0.Additionally, the immobilized OPH onto epoxy and CDI activated cellulose retained about 59% and 68% of their initial activity after ten turns of batch operation, respectively.The results demonstrated the high performance of OPH enzyme in immobilized state onto an inexpensive support with the potential of industrial applications.
文摘Aim: To examine if the seed extracts of Carica papaya, which showed anfispermatogenic/sperm immobilizationproperties in animal models, could cause human sperm immobilization in vitro. Methods: Chloroform extract, ben-zene chromatographic fraction of the chloroform extract, its methanol and ethyl acetate sub-fractions and the isolatedcompounds from the sub-fractions i. e., ECP 1 & 2 and MCP 1 & 2, of the seeds of Carica papaya were used at con-centrations of 0.1%, 0.5%, 1% and 2%. Sperm motility was assessed immediately after addition of extracts and ev-ery 5 minutes thereafter for 30 minutes. Results: There were dose-dependent spermicidal effects showing an instantfall in the sperm motility to less than 20% at 2% concentration. Isolated compounds ECP 1 & 2 were more effective in-ducing a motility of less than 10%. Many of the spermatozoa became vibratory on the spot. Total inhibition of motilitywas observed within 20-25 rain at all concentrations of all products. Scanning and transmission electron microscopyrevealed deleterious changes in the plasma membrane of the head and mid-piece of spermatozoa. Sperm viability testand the number of abnormal spermatozoa after completion of incubation suggested that the spermatozoa were infertile.The effects were spermicidal but not spermiostatic as revealed by the sperm revival test. Conclusion: The results re-veal spermicidal activity in vitro of the seed extracts of Carica papaya.
文摘Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide beating wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sul- fide-beating wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neu- tralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment (t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sul- fate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.
基金Project supported by the Construct Program of the Key Discipline in Hunan Province,ChinaAid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic properties of twodimensional transition metal dichalcogenides(TMDCs) with the formula of MX2(M = Mo, W; X = O, S, Se, Te) in both monolayer and bilayer structures. The calculated band structures show a direct band gap for monolayer TMDCs at the K point except for MoO2 and WO2. When the monolayers are stacked into a bilayer, the reduced indirect band gaps are found except for bilayer WTe2, in which the direct gap is still present at the K point. The calculated in-plane Young moduli are comparable to that of graphene, which promises possible application of TMDCs in future flexible and stretchable electronic devices. We also evaluated the performance of different functionals including LDA, PBE, and opt B88-vd W in describing elastic moduli of TMDCs and found that LDA seems to be the most qualified method. Moreover, our calculations suggest that the Young moduli for bilayers are insensitive to stacking orders and the mechanical coupling between monolayers seems to be negligible.