In this paper, nonlocal symmetries defined by bilinear Baacklund transformation for bilinear potential Kd V(p Kd V)equation are obtained. By introducing an auxiliary variable which just satisfies the Schwartzian for...In this paper, nonlocal symmetries defined by bilinear Baacklund transformation for bilinear potential Kd V(p Kd V)equation are obtained. By introducing an auxiliary variable which just satisfies the Schwartzian form of Kd V(SKd V)equation, the nonlocal symmetry is localized and the Levi transformation is presented. Besides, based on three different types of nonlocal symmetries for potential Kd V equation, three sets of negative p Kd V hierarchies along with their bilinear forms are constructed. An impressive result is that the coefficients of the third type of(bilinear) negative p Kd V hierarchy(N 〉 0) are variable, which are obtained via introducing an arbitrary parameter by considering the translation invariance of the p Kd V equation.展开更多
In this paper, we apply the binary Bell polynomial approach to high-dimensional variable-coefficient nonlinear evolution equations. Taking the generalized (2+1)-dimensional KdV equation with variable coefficients a...In this paper, we apply the binary Bell polynomial approach to high-dimensional variable-coefficient nonlinear evolution equations. Taking the generalized (2+1)-dimensional KdV equation with variable coefficients as an illustrative example, the bilinear formulism, the bilinear Backlund transformation and the Lax pair are obtained in a quick and natural manner. Moreover, the infinite conservation laws are also derived.展开更多
We investigate the extended (2+ 1)-dimensional shaUow water wave equation. The binary Bell polynomials are used to construct bilinear equation, bilinear Backlund transformation, Lax pair, and Darboux covariant Lax ...We investigate the extended (2+ 1)-dimensional shaUow water wave equation. The binary Bell polynomials are used to construct bilinear equation, bilinear Backlund transformation, Lax pair, and Darboux covariant Lax pair for this equation. Moreover, the infinite conservation laws of this equation are found by using its Lax pair. All conserved densities and fluxes are given with explicit recursion formulas. The N-soliton solutions are also presented by means of the Hirota bilinear method.展开更多
In this paper, negatons, positons, and complexiton solutions of higher order for a non-isospectral KdV equation, the KdV equation with loss and non-uniformity terms are obtained through the bilinear Baicklund transfor...In this paper, negatons, positons, and complexiton solutions of higher order for a non-isospectral KdV equation, the KdV equation with loss and non-uniformity terms are obtained through the bilinear Baicklund transformation. Further, the properties of some solutions are shown by some figures made by using Maple.展开更多
Binary Bell Polynomials play an important role in the characterization of bilinear equation. The bilinear form, bilinear B?cklund transformation and Lax pairs for the modified Kadomtsev-Petviashvili equation are deriv...Binary Bell Polynomials play an important role in the characterization of bilinear equation. The bilinear form, bilinear B?cklund transformation and Lax pairs for the modified Kadomtsev-Petviashvili equation are derived from the Binary Bell Polynomials.展开更多
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant No.LQ13A010014)the National Natural Science Foundation of China(Grant Nos.11326164,11401528,and 11275072)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120076110024)
文摘In this paper, nonlocal symmetries defined by bilinear Baacklund transformation for bilinear potential Kd V(p Kd V)equation are obtained. By introducing an auxiliary variable which just satisfies the Schwartzian form of Kd V(SKd V)equation, the nonlocal symmetry is localized and the Levi transformation is presented. Besides, based on three different types of nonlocal symmetries for potential Kd V equation, three sets of negative p Kd V hierarchies along with their bilinear forms are constructed. An impressive result is that the coefficients of the third type of(bilinear) negative p Kd V hierarchy(N 〉 0) are variable, which are obtained via introducing an arbitrary parameter by considering the translation invariance of the p Kd V equation.
基金supported by the National Natural Science Foundation of China(Grant No.10831003)the Natural Science Foundation of Zhejiang Province,China(Grant Nos.Y6100791 and R6090109)
文摘In this paper, we apply the binary Bell polynomial approach to high-dimensional variable-coefficient nonlinear evolution equations. Taking the generalized (2+1)-dimensional KdV equation with variable coefficients as an illustrative example, the bilinear formulism, the bilinear Backlund transformation and the Lax pair are obtained in a quick and natural manner. Moreover, the infinite conservation laws are also derived.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11075055 and 11275072)the Innovative Research Team Program of the National Natural Science Foundation of China (Grant No. 61021004)+1 种基金the Shanghai Knowledge Service Platform for Trustworthy Internet of Things, China(Grant No. ZF1213)the National High Technology Research and Development Program of China (Grant No. 2011AA010101)
文摘We investigate the extended (2+ 1)-dimensional shaUow water wave equation. The binary Bell polynomials are used to construct bilinear equation, bilinear Backlund transformation, Lax pair, and Darboux covariant Lax pair for this equation. Moreover, the infinite conservation laws of this equation are found by using its Lax pair. All conserved densities and fluxes are given with explicit recursion formulas. The N-soliton solutions are also presented by means of the Hirota bilinear method.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘In this paper, negatons, positons, and complexiton solutions of higher order for a non-isospectral KdV equation, the KdV equation with loss and non-uniformity terms are obtained through the bilinear Baicklund transformation. Further, the properties of some solutions are shown by some figures made by using Maple.
基金supported by the National Natural Science Foundation of China(11301183).
文摘Binary Bell Polynomials play an important role in the characterization of bilinear equation. The bilinear form, bilinear B?cklund transformation and Lax pairs for the modified Kadomtsev-Petviashvili equation are derived from the Binary Bell Polynomials.