The design and analysis of authenticated key exchange protocol is an important problem in information security area. At present, extended Canetti-Krawczyk (eCK) model provides the strongest definition of security for ...The design and analysis of authenticated key exchange protocol is an important problem in information security area. At present, extended Canetti-Krawczyk (eCK) model provides the strongest definition of security for two party key agreement protocol, however most of the current secure protocols can not be prove to secure without Gap assumption. To avoid this phenomenon, by using twinning key technology we propose a new two party key agreement protocol TUP which is obtained by modifying the UP protocol, then in conjunction with the trapdoor test, we prove strictly that the new protocol is secure in eCK model. Compared with previous protocols, the security assumption of new proposal is more standard and weaker, and it also solves an open problem in ProvSec'09.展开更多
Most research works nowadays deal with real-time Internetof Things (IoT) data. However, with exponential data volume increases,organizations need help storing such humongous amounts of IoT data incloud storage systems...Most research works nowadays deal with real-time Internetof Things (IoT) data. However, with exponential data volume increases,organizations need help storing such humongous amounts of IoT data incloud storage systems. Moreover, such systems create security issues whileefficiently using IoT and Cloud Computing technologies. Ciphertext-Policy Attribute-Based Encryption (CP-ABE) has the potential to make IoT datamore secure and reliable in various cloud storage services. Cloud-assisted IoTssuffer from two privacy issues: access policies (public) and super polynomialdecryption times (attributed mainly to complex access structures). We havedeveloped a CP-ABE scheme in alignment with a Hidden HierarchyCiphertext-Policy Attribute-Based Encryption (HH-CP-ABE) access structure embedded within two policies, i.e., public policy and sensitive policy.In this proposed scheme, information is only revealed when the user’sinformation is satisfactory to the public policy. Furthermore, the proposedscheme applies to resource-constrained devices already contracted tasks totrusted servers (especially encryption/decryption/searching). Implementingthe method and keywords search resulted in higher access policy privacy andincreased security. The new scheme introduces superior storage in comparisonto existing systems (CP-ABE, H-CP-ABE), while also decreasing storage costsin HH-CP-ABE. Furthermore, a reduction in time for key generation canalso be noted.Moreover, the scheme proved secure, even in handling IoT datathreats in the Decisional Bilinear Diffie-Hellman (DBDH) case.展开更多
对Tang等(TANG Y,LEE P,LUI J,et al.Secure overlay cloud storage with access control and assured deletion.IEEE Transactions on Dependable and Secure Computing,2012,9(6):903-916)提出的一种云存储的细粒度访问控制方案进行...对Tang等(TANG Y,LEE P,LUI J,et al.Secure overlay cloud storage with access control and assured deletion.IEEE Transactions on Dependable and Secure Computing,2012,9(6):903-916)提出的一种云存储的细粒度访问控制方案进行安全性分析,发现其存在不能抵抗合谋攻击的问题,并给出了具体的攻击方法。针对该方案安全性方面的不足,利用基于属性的加密算法抗合谋攻击的特性,对使用访问树结构的密文策略加密(CP-ABE)算法进行改进,使改进后的算法能够直接运用到云存储访问控制方案中而不需要对云存储服务器进行任何修改,同时可实现细粒度的访问控制和用户数据的彻底删除。最后基于判断双向性Deffie-Hellman(DBDH)假设,证明了该方案在选择明文攻击下的安全性,并通过将方案运用到实际的云环境中进行分析后证明改进后的方案能够抵抗合谋攻击。展开更多
文摘The design and analysis of authenticated key exchange protocol is an important problem in information security area. At present, extended Canetti-Krawczyk (eCK) model provides the strongest definition of security for two party key agreement protocol, however most of the current secure protocols can not be prove to secure without Gap assumption. To avoid this phenomenon, by using twinning key technology we propose a new two party key agreement protocol TUP which is obtained by modifying the UP protocol, then in conjunction with the trapdoor test, we prove strictly that the new protocol is secure in eCK model. Compared with previous protocols, the security assumption of new proposal is more standard and weaker, and it also solves an open problem in ProvSec'09.
文摘Most research works nowadays deal with real-time Internetof Things (IoT) data. However, with exponential data volume increases,organizations need help storing such humongous amounts of IoT data incloud storage systems. Moreover, such systems create security issues whileefficiently using IoT and Cloud Computing technologies. Ciphertext-Policy Attribute-Based Encryption (CP-ABE) has the potential to make IoT datamore secure and reliable in various cloud storage services. Cloud-assisted IoTssuffer from two privacy issues: access policies (public) and super polynomialdecryption times (attributed mainly to complex access structures). We havedeveloped a CP-ABE scheme in alignment with a Hidden HierarchyCiphertext-Policy Attribute-Based Encryption (HH-CP-ABE) access structure embedded within two policies, i.e., public policy and sensitive policy.In this proposed scheme, information is only revealed when the user’sinformation is satisfactory to the public policy. Furthermore, the proposedscheme applies to resource-constrained devices already contracted tasks totrusted servers (especially encryption/decryption/searching). Implementingthe method and keywords search resulted in higher access policy privacy andincreased security. The new scheme introduces superior storage in comparisonto existing systems (CP-ABE, H-CP-ABE), while also decreasing storage costsin HH-CP-ABE. Furthermore, a reduction in time for key generation canalso be noted.Moreover, the scheme proved secure, even in handling IoT datathreats in the Decisional Bilinear Diffie-Hellman (DBDH) case.
文摘对Tang等(TANG Y,LEE P,LUI J,et al.Secure overlay cloud storage with access control and assured deletion.IEEE Transactions on Dependable and Secure Computing,2012,9(6):903-916)提出的一种云存储的细粒度访问控制方案进行安全性分析,发现其存在不能抵抗合谋攻击的问题,并给出了具体的攻击方法。针对该方案安全性方面的不足,利用基于属性的加密算法抗合谋攻击的特性,对使用访问树结构的密文策略加密(CP-ABE)算法进行改进,使改进后的算法能够直接运用到云存储访问控制方案中而不需要对云存储服务器进行任何修改,同时可实现细粒度的访问控制和用户数据的彻底删除。最后基于判断双向性Deffie-Hellman(DBDH)假设,证明了该方案在选择明文攻击下的安全性,并通过将方案运用到实际的云环境中进行分析后证明改进后的方案能够抵抗合谋攻击。