期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Strong coordination interaction in amorphous Sn-Ti-ethylene glycol compound for stable Li-ion storage
1
作者 Yuqing Cai Haigang Liu +6 位作者 Haoran Li Qianzi Sun Xiang Wang Fangyuan Zhu Ziquan Li Jang-Kyo Kim Zhen-Dong Huang 《Energy Materials and Devices》 2023年第2期50-61,共12页
Sn has been considered one of the most promising metallic anode materials for lithium-ion batteries(LIBs)because of its high specific capacity.Herein,we report a novel amorphous tin-titanium-ethylene glycol(Sn-Ti-EG)b... Sn has been considered one of the most promising metallic anode materials for lithium-ion batteries(LIBs)because of its high specific capacity.Herein,we report a novel amorphous tin-titanium-ethylene glycol(Sn-Ti-EG)bimetal organic compound as an anode for LIBs.The Sn-Ti-EG electrode exhibits exceptional cyclic stability with high Li-ion storage capacity.Even after 700 cycles at a current density of 1.0 A g−1,the anode maintains a capacity of 345 mAh g−1.The unique bimetal organic structure of the Sn-Ti-EG anode and the strong coordination interaction between Sn/Ti and O within the framework effectively suppress the aggrega-tion of Sn atoms,eliminating the usual pulverization of bulk Sn through volume expansion.Furthermore,the Sn M-edge of the X-ray absorption near-edge structure spectra obtained using soft X-ray absorption spec-troscopy signifies the conversion of Sn2+ions into Sn0 during the initial lithiation process,which is reversible upon delithiation.These findings reveal that Sn is one of the most active components that account for the excellent electrochemical performance of the Sn-Ti-EG electrode,whereas Ti has no practical contribution to the capacity of the electrode.The reversible formation of organic functional groups on the solid electrolyte interphase is also partly responsible for its cyclic stability. 展开更多
关键词 lithium-ion batteries anode materials bimetal organic compounds tin ethylene glycol
下载PDF
HCWCI/Carbon Steel Bimetal Liner by Liquid-Liquid Compound Lost Foam Casting 被引量:11
2
作者 XIAO Xiao-feng1,2, YE Sheng-ping2, YIN Wei-xin3, XUE Qiong4 (1. School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, Hubei, China 2. State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China +1 位作者 3. Wuhan Zhike Abrasive-Resistant Material Science and Technology Development Co Ltd, Wuhan 430073, Hubei, China 4. College of Science, Wuhan University of Technology, Wuhan 430079, Hubei, China) 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第10期13-19,共7页
Impact, friction and corrosion from the grinding balls and the grinding medium during the mineral processing result in liner breakage. Liner, made from Hadfield steel or alloyed steel, could not have served in wet gri... Impact, friction and corrosion from the grinding balls and the grinding medium during the mineral processing result in liner breakage. Liner, made from Hadfield steel or alloyed steel, could not have served in wet grinding environment for more than ten months. Composite liner, made from HCWCI (high Cr white cast iron) and carbon steel, has been developed successfully with liquid-liquid composing process based on LFC (lost foam casting). The microstructure of composite was analyzed with optical microscope, SEM (scanning electron microscope)/EDX energy-dispersive X-ray and XRD (X-ray diffraction). According to micrograph, the combination region of two metals was staggered like dogtooth, no mixtures occurred between two liquid metals, and its interface presented excellent metallurgical bonding state. The results of mechanical property test show that, the hardness of HRC, the fracture toughness, and the bending strength are more than 61, 16.5 J/cm2 and 1 600 MPa, respectively. Comparison between liners made from bimetal composite and alloyed steel has also been investigated in industrial hematite ball mill. The results of eight months test in wet grinding environment prove that the service life of bimetal composite liner is three times as long as that of one made from alloyed steel. 展开更多
关键词 composite liner bimetal liquid-liquid compound composite interface lost foam casting high Cr white cast iron
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部