We establish relations between Frobenius parts and between flat-dominant dimensions of algebras linked by Frobenius bimodules.This is motivated by the Nakayama conjecture and an approach of MartinezVilla to the Auslan...We establish relations between Frobenius parts and between flat-dominant dimensions of algebras linked by Frobenius bimodules.This is motivated by the Nakayama conjecture and an approach of MartinezVilla to the Auslander-Reiten conjecture on stable equivalences.We show that the Frobenius parts of Frobenius extensions are again Frobenius extensions.Furthermore,let A and B be finite-dimensional algebras over a field k,and let domdim(_AX)stand for the dominant dimension of an A-module X.If_BM_A is a Frobenius bimodule,then domdim(A)domdim(_BM)and domdim(B)domdim(_AHom_B(M,B)).In particular,if B■A is a left-split(or right-split)Frobenius extension,then domdim(A)=domdim(B).These results are applied to calculate flat-dominant dimensions of a number of algebras:shew group algebras,stably equivalent algebras,trivial extensions and Markov extensions.We also prove that the universal(quantised)enveloping algebras of semisimple Lie algebras are QF-3 rings in the sense of Morita.展开更多
Let V be a vertex operator superalgebra and m, n ∈ 1/2 ?+. We construct an A n (V)-A m (V)-bimodule A n,m (V) which characterizes the action of V from the level m subspace to level n subspace of an admissible V-modul...Let V be a vertex operator superalgebra and m, n ∈ 1/2 ?+. We construct an A n (V)-A m (V)-bimodule A n,m (V) which characterizes the action of V from the level m subspace to level n subspace of an admissible V-module. We also construct the Verma type admissible V-module from an A m (V)-module by using bimodules展开更多
Tilting pair was introduced by Miyashita in 2001 as a generalization of tilting module. In this paper, we construct a tilting left Endh(C)-right Endh(T)-bimodule for a given tilting pairs (C,T) in modh, where A ...Tilting pair was introduced by Miyashita in 2001 as a generalization of tilting module. In this paper, we construct a tilting left Endh(C)-right Endh(T)-bimodule for a given tilting pairs (C,T) in modh, where A is an Artin algebra.展开更多
The duality theorem of generalized weak smash coproducts of weak module coalgebras and comodule coalgebras over quantum groupoids is studied.Let H be a weak Hopf algebra,C a left weak H-comodule coalgebra and D a left...The duality theorem of generalized weak smash coproducts of weak module coalgebras and comodule coalgebras over quantum groupoids is studied.Let H be a weak Hopf algebra,C a left weak H-comodule coalgebra and D a left weak H-module coalgebra.First,a weak generalized smash coproduct C×lH D over quantum groupoids is defined and the module and comodule structures on it are constructed.The weak generalized right smash coproduct C×rL D is similar.Then some isomorph-isms between them are obtained.Secondly,by introducing some concepts of a weak convolution invertible element,a weak co-inner coaction and a strongly relative co-inner coaction,a sufficient condition for C×rH D to be isomorphic to Cv D is obtained,where v∈WC(C,H)and the coaction of H on D is right strongly relative co-inner.Finally,the duality theorem for a generalized smash coproduct over quantum groupoids,(C×lH H)×lH H≌Cv(H×lH H),is obtained.展开更多
The theory of L-R smash product is extended to multiplier Hopf algebras and a sufficient condition for L-R smash product to be regular multiplier Hopf algebras is given. In particular, the result of the paper implies ...The theory of L-R smash product is extended to multiplier Hopf algebras and a sufficient condition for L-R smash product to be regular multiplier Hopf algebras is given. In particular, the result of the paper implies Delvaux's main theorem in the case of smash products.展开更多
The main aim of this paper is to study the twisting theory of weak Hopf algebras and give an equivalence between the (braided) monoidal categories of weak Hopf bimodules over the original and the twisted weak Hopf a...The main aim of this paper is to study the twisting theory of weak Hopf algebras and give an equivalence between the (braided) monoidal categories of weak Hopf bimodules over the original and the twisted weak Hopf algebra to generalize the result from Oeckl (2000).展开更多
L-octo-algebra with 8 operations as the Lie algebraic analogue of octo- algebra such that the sum of 8 operations is a Lie algebra is discussed. Any octo- algebra is an L-octo-algebra. The relationships among L-octo-a...L-octo-algebra with 8 operations as the Lie algebraic analogue of octo- algebra such that the sum of 8 operations is a Lie algebra is discussed. Any octo- algebra is an L-octo-algebra. The relationships among L-octo-algebras, L-quadri- algebras, L-dendriform algebras, pre-Lie algebras and Lie algebras are given. The close relationships between L-octo-algebras and some interesting structures like Rota- Baxter operators, classical Yang-Baxter equations and some bilinear forms satisfying certain conditions are given also.展开更多
Let A and B be two regular multiplier Hopf algebras.First,the notion of diagonal crossed product B#A of multiplier Hopf algebras is constructed using the bimodule algebra,which is a generalization of the diagonal cros...Let A and B be two regular multiplier Hopf algebras.First,the notion of diagonal crossed product B#A of multiplier Hopf algebras is constructed using the bimodule algebra,which is a generalization of the diagonal crossed product in the sense of Hopf algebras.The result that the product in B#A is non-degenerate is given.Next,the definition of the comultiplicationΔ#on B#A is introduced,which is composed of the multiplierΔB(b)on B⊗B and the multiplierΔA(a)on A⊗A,and the elementΔ#(b⊗a)is a two-side multiplier of B#A⊗B#A,for any b∈B and a∈A.Then,a sufficient condition for B#A to be a regular multiplier Hopf algebra is described.In particular,Delvaux's main theorem in the case of smash products is generalized.Finally,these integrals on a diagonal crossed product of multiplier Hopf algebras are considered.展开更多
Under semi-weak and weak compatibility conditions of bimodules,we establish necessary and sufficient conditions of Gorenstein-projective modules over rings of Morita contexts with one bimodule homomorphism zero.This e...Under semi-weak and weak compatibility conditions of bimodules,we establish necessary and sufficient conditions of Gorenstein-projective modules over rings of Morita contexts with one bimodule homomorphism zero.This extends greatly the results on triangular matrix Artin algebras and on Artin algebras of Morita contexts with two bimodule homomorphisms zero in the literature,where only sufficient conditions are given under a strong assumption of compatibility of bimodules.An application is provided to describe Gorenstein-projective modules over noncommutative tensor products arising from Morita contexts.Our results are proved under a general setting of noetherian rings and modules instead of Artin algebras and modules.展开更多
Extending the notion of property T of finite von Neumann algebras to general yon Neu- mann algebras, we define and study in this paper property T** for (possibly non-unital) C*-algebras. We obtain several results...Extending the notion of property T of finite von Neumann algebras to general yon Neu- mann algebras, we define and study in this paper property T** for (possibly non-unital) C*-algebras. We obtain several results of property T** parallel to those of property T for unital C*-algebras. Moreover, we show that a discrete group F has property T if and only if the group C*-algebra C*(F) (or equivalently, the reduced group C*-algebra C*(F)) has property T**. We also show that the compact operators K(g2) has property T** but co does not have property T**.展开更多
Let A and F be left and right Noetherian rings and ∧ωr a cotilting bimodule. A necessary and sufficient condition for a finitely generated A-module to be ω-k-torsionfree is given and the extension closure of Tω^i ...Let A and F be left and right Noetherian rings and ∧ωr a cotilting bimodule. A necessary and sufficient condition for a finitely generated A-module to be ω-k-torsionfree is given and the extension closure of Tω^i is discussed. As applications, we give some results of ∧ωr related to l.id(ω) ≤ k.展开更多
The generalized noncommutative torus Tkp of rank n was defined in [4] by the crossed product Am/k ×a3 Z ×a4 … ×an Z, where the actions ai of Z on the fibre Mk(C) of a rational rotation algebra Am/k are...The generalized noncommutative torus Tkp of rank n was defined in [4] by the crossed product Am/k ×a3 Z ×a4 … ×an Z, where the actions ai of Z on the fibre Mk(C) of a rational rotation algebra Am/k are trivial, and C*(kZ × kZ) ×a3 Z ×a4 ... ×an Z is a completely irrational noncommutative torus Ap of rank n. It is shown in this paper that Tkp is strongly Morita equivalent to Ap, and that Tkp (?) Mp∞ is isomorphic to Ap (?) Mk(C) (?) Mp∞ if and only if the set of prime factors of k is a subset of the set of prime factors of p.展开更多
The multiplier bimodule of Hilbert bimodule is introduced in a way similar to [1], and its realization on a quotient of bidual space and Tietze extension theorem are obtained similar to that in C-algebra case. As a re...The multiplier bimodule of Hilbert bimodule is introduced in a way similar to [1], and its realization on a quotient of bidual space and Tietze extension theorem are obtained similar to that in C-algebra case. As a result, the multiplier bimodule here is also a Hilbert bimodule.展开更多
Given an r-discrete, principal and amenable groupoid, the bijective correspondence between the family c the closedC o(G 0)-bimodules ofC(G) and the family of the open subsets of the groupoidG is established. More over...Given an r-discrete, principal and amenable groupoid, the bijective correspondence between the family c the closedC o(G 0)-bimodules ofC(G) and the family of the open subsets of the groupoidG is established. More over they are rigidity.展开更多
Let (K, M,H) be an upper triangular bimodule problem. Briistle and Hille showed that the opposite algebra A of the endomorphism algebra of a projective generator P of the matrices category of (K., M, H) is quasi-hered...Let (K, M,H) be an upper triangular bimodule problem. Briistle and Hille showed that the opposite algebra A of the endomorphism algebra of a projective generator P of the matrices category of (K., M, H) is quasi-hereditary, and there is an equivalence between the category of△-good modules of A and Mat(K, M). In this note, based on the tame theorem for bimodule problems, we show that if the algebra A associated with an upper triangular bimodule problem is of△-tame representation type, then the category F(△) has the homogeneous property, i.e. almost all modules in F(△) are isomorphic to their Auslander-Reiten translations. Moreover, if (K, M,H)is an upper triangular bipartite bimodule problem, then A is of△-tame representation type if and only if F(△) is homogeneous.展开更多
In this paper, for a vertex operator algebra V with an automorphism g of order T, an admissible V-module M and a fixed nonnegative rational number n ∈1/T Z_+, we construct an A_(g,n)(V)-bimodule Ag,n(M) and study its...In this paper, for a vertex operator algebra V with an automorphism g of order T, an admissible V-module M and a fixed nonnegative rational number n ∈1/T Z_+, we construct an A_(g,n)(V)-bimodule Ag,n(M) and study its properties, discuss the connections between bimodule A_(g,n)(M) and intertwining operators. Especially, bimodule A _(g,n)-1T(M) is a natural quotient of A_(g,n)(M) and there is a linear isomorphism between the space IM^k M Mjof intertwining operators and the space of homomorphisms HomA_(g,n)(V)(A_(g,n)(M) A_(g,n)(V)M^j(s), M^k(t)) for s, t ≤ n, M^j, M^k are g-twisted V modules, if V is g-rational.展开更多
As the dual of the Auslander transpose and the resulting k-torsionfree module,the cotranspose and k-cotorsionfree module with respect to a semidualizing bimodule have been introduced recently.In this paper we first in...As the dual of the Auslander transpose and the resulting k-torsionfree module,the cotranspose and k-cotorsionfree module with respect to a semidualizing bimodule have been introduced recently.In this paper we first investigate the relation between relative k-cotorsionfree modules and relative k-cosyzygy modules.Then we study the extension closure of these two classes of modules.展开更多
We show that every local 3-cocycle of a von Neumann algebra $\mathcal{R}$ into an arbitrary unital dual $\mathcal{R}$ -bimodule $\mathcal{S}$ is a 3-cocycle.
基金supported by the Beijing Natural Science Foundation(Grant No.1192004)National Natural Science Foundation of China(Grant No.11331006)。
文摘We establish relations between Frobenius parts and between flat-dominant dimensions of algebras linked by Frobenius bimodules.This is motivated by the Nakayama conjecture and an approach of MartinezVilla to the Auslander-Reiten conjecture on stable equivalences.We show that the Frobenius parts of Frobenius extensions are again Frobenius extensions.Furthermore,let A and B be finite-dimensional algebras over a field k,and let domdim(_AX)stand for the dominant dimension of an A-module X.If_BM_A is a Frobenius bimodule,then domdim(A)domdim(_BM)and domdim(B)domdim(_AHom_B(M,B)).In particular,if B■A is a left-split(or right-split)Frobenius extension,then domdim(A)=domdim(B).These results are applied to calculate flat-dominant dimensions of a number of algebras:shew group algebras,stably equivalent algebras,trivial extensions and Markov extensions.We also prove that the universal(quantised)enveloping algebras of semisimple Lie algebras are QF-3 rings in the sense of Morita.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10571119, 10671027)
文摘Let V be a vertex operator superalgebra and m, n ∈ 1/2 ?+. We construct an A n (V)-A m (V)-bimodule A n,m (V) which characterizes the action of V from the level m subspace to level n subspace of an admissible V-module. We also construct the Verma type admissible V-module from an A m (V)-module by using bimodules
基金Supported by the National Natural Science Foundation of China (Grant Nos.1097102410826036)+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.200802860024)the Natural Science Foundation of Jiangsu Province (Grant No.BK2010393)the Scientific Research Foundation of Guangxi University (Grant No.XJZ100246)
文摘Tilting pair was introduced by Miyashita in 2001 as a generalization of tilting module. In this paper, we construct a tilting left Endh(C)-right Endh(T)-bimodule for a given tilting pairs (C,T) in modh, where A is an Artin algebra.
基金The National Natural Science Foundation of China(No.10871042)the Natural Science Foundation of Jiangsu Province(No.BK2009258)
文摘The duality theorem of generalized weak smash coproducts of weak module coalgebras and comodule coalgebras over quantum groupoids is studied.Let H be a weak Hopf algebra,C a left weak H-comodule coalgebra and D a left weak H-module coalgebra.First,a weak generalized smash coproduct C×lH D over quantum groupoids is defined and the module and comodule structures on it are constructed.The weak generalized right smash coproduct C×rL D is similar.Then some isomorph-isms between them are obtained.Secondly,by introducing some concepts of a weak convolution invertible element,a weak co-inner coaction and a strongly relative co-inner coaction,a sufficient condition for C×rH D to be isomorphic to Cv D is obtained,where v∈WC(C,H)and the coaction of H on D is right strongly relative co-inner.Finally,the duality theorem for a generalized smash coproduct over quantum groupoids,(C×lH H)×lH H≌Cv(H×lH H),is obtained.
基金Supported by the Ningbo Natural Science Foundation(2006A610089)
文摘The theory of L-R smash product is extended to multiplier Hopf algebras and a sufficient condition for L-R smash product to be regular multiplier Hopf algebras is given. In particular, the result of the paper implies Delvaux's main theorem in the case of smash products.
基金Partially supported by the Specialized Research Fund for the Doctoral Program of Higher Education(20060286006)the National Natural Science Foundation of China(10571026)the Southeast University Fund(XJ0707273).
文摘The main aim of this paper is to study the twisting theory of weak Hopf algebras and give an equivalence between the (braided) monoidal categories of weak Hopf bimodules over the original and the twisted weak Hopf algebra to generalize the result from Oeckl (2000).
文摘L-octo-algebra with 8 operations as the Lie algebraic analogue of octo- algebra such that the sum of 8 operations is a Lie algebra is discussed. Any octo- algebra is an L-octo-algebra. The relationships among L-octo-algebras, L-quadri- algebras, L-dendriform algebras, pre-Lie algebras and Lie algebras are given. The close relationships between L-octo-algebras and some interesting structures like Rota- Baxter operators, classical Yang-Baxter equations and some bilinear forms satisfying certain conditions are given also.
基金The National Natural Science Foundation of China(No.11371088,11571173,11871144)the Natural Science Foundation of Jiangsu Province(No.BK20171348)。
文摘Let A and B be two regular multiplier Hopf algebras.First,the notion of diagonal crossed product B#A of multiplier Hopf algebras is constructed using the bimodule algebra,which is a generalization of the diagonal crossed product in the sense of Hopf algebras.The result that the product in B#A is non-degenerate is given.Next,the definition of the comultiplicationΔ#on B#A is introduced,which is composed of the multiplierΔB(b)on B⊗B and the multiplierΔA(a)on A⊗A,and the elementΔ#(b⊗a)is a two-side multiplier of B#A⊗B#A,for any b∈B and a∈A.Then,a sufficient condition for B#A to be a regular multiplier Hopf algebra is described.In particular,Delvaux's main theorem in the case of smash products is generalized.Finally,these integrals on a diagonal crossed product of multiplier Hopf algebras are considered.
基金supported by National Natural Science Foundation of China (Grant Nos.12031014 and 12226314)。
文摘Under semi-weak and weak compatibility conditions of bimodules,we establish necessary and sufficient conditions of Gorenstein-projective modules over rings of Morita contexts with one bimodule homomorphism zero.This extends greatly the results on triangular matrix Artin algebras and on Artin algebras of Morita contexts with two bimodule homomorphisms zero in the literature,where only sufficient conditions are given under a strong assumption of compatibility of bimodules.An application is provided to describe Gorenstein-projective modules over noncommutative tensor products arising from Morita contexts.Our results are proved under a general setting of noetherian rings and modules instead of Artin algebras and modules.
文摘Extending the notion of property T of finite von Neumann algebras to general yon Neu- mann algebras, we define and study in this paper property T** for (possibly non-unital) C*-algebras. We obtain several results of property T** parallel to those of property T for unital C*-algebras. Moreover, we show that a discrete group F has property T if and only if the group C*-algebra C*(F) (or equivalently, the reduced group C*-algebra C*(F)) has property T**. We also show that the compact operators K(g2) has property T** but co does not have property T**.
文摘Let A and F be left and right Noetherian rings and ∧ωr a cotilting bimodule. A necessary and sufficient condition for a finitely generated A-module to be ω-k-torsionfree is given and the extension closure of Tω^i is discussed. As applications, we give some results of ∧ωr related to l.id(ω) ≤ k.
基金Project supported by Grant No.1999-2-102-001-3 from the Interdisciplinary Research Program Year of the KOSEF.
文摘The generalized noncommutative torus Tkp of rank n was defined in [4] by the crossed product Am/k ×a3 Z ×a4 … ×an Z, where the actions ai of Z on the fibre Mk(C) of a rational rotation algebra Am/k are trivial, and C*(kZ × kZ) ×a3 Z ×a4 ... ×an Z is a completely irrational noncommutative torus Ap of rank n. It is shown in this paper that Tkp is strongly Morita equivalent to Ap, and that Tkp (?) Mp∞ is isomorphic to Ap (?) Mk(C) (?) Mp∞ if and only if the set of prime factors of k is a subset of the set of prime factors of p.
基金the National Natural Science Foundation of China (No.19601029).
文摘The multiplier bimodule of Hilbert bimodule is introduced in a way similar to [1], and its realization on a quotient of bidual space and Tietze extension theorem are obtained similar to that in C-algebra case. As a result, the multiplier bimodule here is also a Hilbert bimodule.
文摘Given an r-discrete, principal and amenable groupoid, the bijective correspondence between the family c the closedC o(G 0)-bimodules ofC(G) and the family of the open subsets of the groupoidG is established. More over they are rigidity.
基金This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 10426014,10501010 and 19331030)the Foundation of Hubei Provincial Department of Education (Grant No.D200510005).
文摘Let (K, M,H) be an upper triangular bimodule problem. Briistle and Hille showed that the opposite algebra A of the endomorphism algebra of a projective generator P of the matrices category of (K., M, H) is quasi-hereditary, and there is an equivalence between the category of△-good modules of A and Mat(K, M). In this note, based on the tame theorem for bimodule problems, we show that if the algebra A associated with an upper triangular bimodule problem is of△-tame representation type, then the category F(△) has the homogeneous property, i.e. almost all modules in F(△) are isomorphic to their Auslander-Reiten translations. Moreover, if (K, M,H)is an upper triangular bipartite bimodule problem, then A is of△-tame representation type if and only if F(△) is homogeneous.
基金supported by National Natural Science Foundation of China(Grant Nos.11101269 and 11431010)
文摘In this paper, for a vertex operator algebra V with an automorphism g of order T, an admissible V-module M and a fixed nonnegative rational number n ∈1/T Z_+, we construct an A_(g,n)(V)-bimodule Ag,n(M) and study its properties, discuss the connections between bimodule A_(g,n)(M) and intertwining operators. Especially, bimodule A _(g,n)-1T(M) is a natural quotient of A_(g,n)(M) and there is a linear isomorphism between the space IM^k M Mjof intertwining operators and the space of homomorphisms HomA_(g,n)(V)(A_(g,n)(M) A_(g,n)(V)M^j(s), M^k(t)) for s, t ≤ n, M^j, M^k are g-twisted V modules, if V is g-rational.
基金This research was partially supported by NSFC(11401147,11531002)Natural Science Foundation of Shandong Province of China(ZR2017BA028).
文摘As the dual of the Auslander transpose and the resulting k-torsionfree module,the cotranspose and k-cotorsionfree module with respect to a semidualizing bimodule have been introduced recently.In this paper we first investigate the relation between relative k-cotorsionfree modules and relative k-cosyzygy modules.Then we study the extension closure of these two classes of modules.
基金This work was partially supported by the National Natural Science Foundation of China (Grant Nos.10201007 and A0324614)the Natural Science Foundation of Shandong Province (Grant No.Y2006A03)
文摘We show that every local 3-cocycle of a von Neumann algebra $\mathcal{R}$ into an arbitrary unital dual $\mathcal{R}$ -bimodule $\mathcal{S}$ is a 3-cocycle.