Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborh...Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborhood match method using genetic algorithm is used to conceal the error blocks. Experimental results show that the searching space can be greatly reduced by using genetic algorithm compared with exhaustive searching method, and good image quality is achieved. The peak signal noise ratios(PSNRs) of the restored images are increased greatly.展开更多
With the exponential development of mobile communications and the miniaturization of radio frequency transceivers, the need for small and low profile antennas at mobile frequencies is constantly growing. Therefore, ne...With the exponential development of mobile communications and the miniaturization of radio frequency transceivers, the need for small and low profile antennas at mobile frequencies is constantly growing. Therefore, new antennas should be developed to provide larger bandwidth and at the same time small dimensions. Although the gain in bandwidth performances of an antenna are directly related to its dimensions in relation to the wavelength, the aim is to keep the overall size of the antenna constant and from there, find the geometry and structure that give the best performance. The design and bandwidth optimization of a Planar Inverted-F Antenna (PIFA) were introduced in order to achieve a larger bandwidth in the 2 GHz band, using two optimization techniques based upon genetic algorithms (GA), namely the Binary Coded GA (BCGA) and Real-Coded GA (RCGA). During the optimization process, the different PIFA models were evaluated using the finite-difference time domain (FDTD) method-a technique belonging to the general class of differential time domain numerical modeling methods.展开更多
In order toovercomethe poor local search ability of genetic algorithm, resulting in the basic genetic algorithm is time-consuming, and low search abilityin the late evolutionary, we use thegray coding instead ofbinary...In order toovercomethe poor local search ability of genetic algorithm, resulting in the basic genetic algorithm is time-consuming, and low search abilityin the late evolutionary, we use thegray coding instead ofbinary codingatthebeginning of the coding;we use multi-point crossoverto replace the originalsingle-point crossoveroperation.Finally, theexperimentshows that the improved genetic algorithmnot only has a strong search capability, but also thestability has been effectively improved.展开更多
Multidimensional grey relation projection value can be synthesized as one-dimensional projection value by using projection pursuit model. The larger the projection value is,the better the model. Thus,according to the ...Multidimensional grey relation projection value can be synthesized as one-dimensional projection value by using projection pursuit model. The larger the projection value is,the better the model. Thus,according to the projection value,the best one can be chosen from the model aggregation. Because projection pursuit modeling based on accelerating genetic algorithm can simplify the implementation procedure of the projection pursuit technique and overcome its complex calculation as well as the difficulty in implementing its program,a new method can be obtained for choosing the best grey relation projection model based on the projection pursuit technique.展开更多
Ant colony optimization (ACO for short) is a meta-heuristics for hard combinatorial optimization problems. It is a population-based approach that uses exploitation of positive feedback as well as greedy search. In thi...Ant colony optimization (ACO for short) is a meta-heuristics for hard combinatorial optimization problems. It is a population-based approach that uses exploitation of positive feedback as well as greedy search. In this paper, genetic algorithm's (GA for short) ideas are introduced into ACO to present a new binary-coding based ant colony optimization. Compared with the typical ACO, the algorithm is intended to replace the problem's parameter-space with coding-space, which links ACO with GA so that the fruits of GA can be applied to ACO directly. Furthermore, it can not only solve general combinatorial optimization problems, but also other problems such as function optimization. Based on the algorithm, it is proved that if the pheromone remainder factor rho is under the condition of rho greater than or equal to 1, the algorithm can promise to converge at the optimal, whereas if 0 < rho < 1, it does not.展开更多
文摘Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborhood match method using genetic algorithm is used to conceal the error blocks. Experimental results show that the searching space can be greatly reduced by using genetic algorithm compared with exhaustive searching method, and good image quality is achieved. The peak signal noise ratios(PSNRs) of the restored images are increased greatly.
文摘With the exponential development of mobile communications and the miniaturization of radio frequency transceivers, the need for small and low profile antennas at mobile frequencies is constantly growing. Therefore, new antennas should be developed to provide larger bandwidth and at the same time small dimensions. Although the gain in bandwidth performances of an antenna are directly related to its dimensions in relation to the wavelength, the aim is to keep the overall size of the antenna constant and from there, find the geometry and structure that give the best performance. The design and bandwidth optimization of a Planar Inverted-F Antenna (PIFA) were introduced in order to achieve a larger bandwidth in the 2 GHz band, using two optimization techniques based upon genetic algorithms (GA), namely the Binary Coded GA (BCGA) and Real-Coded GA (RCGA). During the optimization process, the different PIFA models were evaluated using the finite-difference time domain (FDTD) method-a technique belonging to the general class of differential time domain numerical modeling methods.
文摘In order toovercomethe poor local search ability of genetic algorithm, resulting in the basic genetic algorithm is time-consuming, and low search abilityin the late evolutionary, we use thegray coding instead ofbinary codingatthebeginning of the coding;we use multi-point crossoverto replace the originalsingle-point crossoveroperation.Finally, theexperimentshows that the improved genetic algorithmnot only has a strong search capability, but also thestability has been effectively improved.
基金The Key Project of NSFC(No.70631003)the Liberal Arts and Social Science Programming Project of Chinese Ministry of Education(No.07JA790109)
文摘Multidimensional grey relation projection value can be synthesized as one-dimensional projection value by using projection pursuit model. The larger the projection value is,the better the model. Thus,according to the projection value,the best one can be chosen from the model aggregation. Because projection pursuit modeling based on accelerating genetic algorithm can simplify the implementation procedure of the projection pursuit technique and overcome its complex calculation as well as the difficulty in implementing its program,a new method can be obtained for choosing the best grey relation projection model based on the projection pursuit technique.
文摘Ant colony optimization (ACO for short) is a meta-heuristics for hard combinatorial optimization problems. It is a population-based approach that uses exploitation of positive feedback as well as greedy search. In this paper, genetic algorithm's (GA for short) ideas are introduced into ACO to present a new binary-coding based ant colony optimization. Compared with the typical ACO, the algorithm is intended to replace the problem's parameter-space with coding-space, which links ACO with GA so that the fruits of GA can be applied to ACO directly. Furthermore, it can not only solve general combinatorial optimization problems, but also other problems such as function optimization. Based on the algorithm, it is proved that if the pheromone remainder factor rho is under the condition of rho greater than or equal to 1, the algorithm can promise to converge at the optimal, whereas if 0 < rho < 1, it does not.