To exploit the parallelism of optics in data processing, a suitable number system and an efficient encoding/decoding scheme for handling the data are very essential. In the field of optical computing and parallel info...To exploit the parallelism of optics in data processing, a suitable number system and an efficient encoding/decoding scheme for handling the data are very essential. In the field of optical computing and parallel information processing, several number systems like binary, quaternary, octal, hexadecimal, etc. have been used for different arithmetic and algebraic operations. Here, we have proposed an all-optical conversion scheme from its binary to its other 2^n radix based form with the help of terahertz optical asymmetric demultiplexer (TOAD) based tree-net architecture.展开更多
In the field of optical computing and parallel information processing, several number systems have been used for different arithmetic and algebraic operations. Therefore an efficient conversion scheme from one number ...In the field of optical computing and parallel information processing, several number systems have been used for different arithmetic and algebraic operations. Therefore an efficient conversion scheme from one number system to another is very important. Modified trinary number (MTN) has already taken a significant role towards carry and borrow free arithmetic operations. In this communication, we propose a tree-net architecture based all optical conversion scheme from binary number to its MTN form. Optical switch using nonlinear material (NLM) plays an important role.展开更多
We propose and experimentally demonstrate mutual optical format conversion between signals characterized as 10-Gb/s nonreturn-to-zero on-of-keying(NRZ-OOK) and NRZ binary phase-shift keying(BPSK) types. The conversion...We propose and experimentally demonstrate mutual optical format conversion between signals characterized as 10-Gb/s nonreturn-to-zero on-of-keying(NRZ-OOK) and NRZ binary phase-shift keying(BPSK) types. The conversion is based on stimulated Brillouin scattering(SBS) in a single-mode optical fber. An OOK signal is converted into a BPSK signal through optical carrier absorption, for which a SBS loss of 30 MHz is used in long-haul transmission. The converted BPSK signal is reverted to an OOK signal with a corresponding SBS gain of 30 MHz for direct detection. The proposed OOK-to-BPSK and BPSK-to-OOK format conversions can be implemented in transmitter and receiver nodes by using a laser source as the Brillouin pump.展开更多
文摘To exploit the parallelism of optics in data processing, a suitable number system and an efficient encoding/decoding scheme for handling the data are very essential. In the field of optical computing and parallel information processing, several number systems like binary, quaternary, octal, hexadecimal, etc. have been used for different arithmetic and algebraic operations. Here, we have proposed an all-optical conversion scheme from its binary to its other 2^n radix based form with the help of terahertz optical asymmetric demultiplexer (TOAD) based tree-net architecture.
文摘In the field of optical computing and parallel information processing, several number systems have been used for different arithmetic and algebraic operations. Therefore an efficient conversion scheme from one number system to another is very important. Modified trinary number (MTN) has already taken a significant role towards carry and borrow free arithmetic operations. In this communication, we propose a tree-net architecture based all optical conversion scheme from binary number to its MTN form. Optical switch using nonlinear material (NLM) plays an important role.
基金supported by the National Natural Science Foundation of China(Nos.61007041,61090393,and 61132004)the Shanghai Chen Guang Scholars Program(No.11CG11)the Excellent PhD Holders in China Program(No.201155)
文摘We propose and experimentally demonstrate mutual optical format conversion between signals characterized as 10-Gb/s nonreturn-to-zero on-of-keying(NRZ-OOK) and NRZ binary phase-shift keying(BPSK) types. The conversion is based on stimulated Brillouin scattering(SBS) in a single-mode optical fber. An OOK signal is converted into a BPSK signal through optical carrier absorption, for which a SBS loss of 30 MHz is used in long-haul transmission. The converted BPSK signal is reverted to an OOK signal with a corresponding SBS gain of 30 MHz for direct detection. The proposed OOK-to-BPSK and BPSK-to-OOK format conversions can be implemented in transmitter and receiver nodes by using a laser source as the Brillouin pump.