[Objective] This study aimed to investigate the frequency of exogenous gene flow to non-transgenic conventional rice cultivars and assess the potential risks of marker-free of insect-resistant transgenic rice to agric...[Objective] This study aimed to investigate the frequency of exogenous gene flow to non-transgenic conventional rice cultivars and assess the potential risks of marker-free of insect-resistant transgenic rice to agricultural ecological environment. [Method] Insect-resistant transgenic rice variety HUAHUI No.1 was planted as the experimental material and surrounded by several non-transgenic conventional rice cultivars. F1 non-transgenic rice seeds were collected according to different distances and identified by using PCR technology, the frequency of exogenous gene flow from insect-resistant transgenic rice to non-transgenic conventional rice cultivars was counted and analyzed. [Result] The average frequency of exogenous Bt gene flow to P13381 and CHUNJIANG063 was 0. Transgene flow occurred to varying degrees from insect-resistant transgenic rice HUAHUI No.1 to several non-transgenic rice lines including HEX122-2, TIANXlANG, MINGHUI63 and Pl157, with the maximum average gene flow frequency of 0.875%. The frequency of gene flow was gradually reduced with the increase of distance, and the average transgene flow frequency de- creased to 0 in all the sampling points 7 m away from transgenic rice material. [Conclusion] This study revealed that the exogenous gene flow frequency of insect-re- sistant transgenic rice variety HUAHUI No.1 was very low, leading to very small risk to the eco-environment. Rational distribution in the field for physical isolation, keeping the appropriate distance and scientific farming arrangement to avoid the synchronization of flowering can effectively control the exogenous gene flow from transgenic rice and reduce he ecological risks caused by transgene escape.展开更多
In order to promote the research of transgenic insect-resistant maize,the target gene were transferred into maize material Hi-Ⅱ by Agrobacterium-mediated genetic transformation of maize embryos,and maize plants with ...In order to promote the research of transgenic insect-resistant maize,the target gene were transferred into maize material Hi-Ⅱ by Agrobacterium-mediated genetic transformation of maize embryos,and maize plants with CryNGc insect-resistant genes were cultured by explant infection,co-culture and differentiation screening to study the genetic expression and resistance of exogenous genes in the offspring.The results showed that the infection effect was the best when the size of young maize embryo was 1.2-1.8 mm.Ten positive transformed plants with CryNGc insect-resistant genes were successfully obtained,and the transformation efficiency was 1.428‰.展开更多
Rxol cloned from maize is a non-host gene resistant to bacterial leaf streak of rice. pCAMBIA1305-1 with Rxo1 was digested with Sca I and NgoM IV and the double right-border binary vector pMNDRBBin6 was digested with ...Rxol cloned from maize is a non-host gene resistant to bacterial leaf streak of rice. pCAMBIA1305-1 with Rxo1 was digested with Sca I and NgoM IV and the double right-border binary vector pMNDRBBin6 was digested with Hpa I and Xma I. pMNDRBBin6 carrying the gene Rxo1 was acquired by ligation of blunt-end and cohesive end. The results of PCR, restriction enzyme analysis and sequencing indicated that the Rxo1 gene had been cloned into pMNDRBBin6. This double right-border binary vector, named as pMNDRBBin6-Rxol, will play a role in breeding marker-free plants resistant to bacterial leaf streak of rice by genetic transformation.展开更多
Microarray gene expression measurements are reported, used and archived usually to high numerical precision. However, properties of mRNA molecules, such as their low stability and availability in small copy numbers, a...Microarray gene expression measurements are reported, used and archived usually to high numerical precision. However, properties of mRNA molecules, such as their low stability and availability in small copy numbers, and the fact that measurements correspond to a population of cells, rather than a single cell, makes high precision meaningless. Recent work shows that reducing measurement precision leads to very little loss of information, right down to binary levels. In this paper we show how properties of binary spaces can be useful in making inferences from microarray data. In particular, we use the Tanimoto similarity metric for binary vectors, which has been used effectively in the Chemoinformatics literature for retrieving chemical compounds with certain functional properties. This measure, when incorporated in a kernel framework, helps recover any information lost by quantization. By implementing a spectral clustering framework, we further show that a second reason for high performance from the Tanimoto metric can be traced back to a hitherto unnoticed systematic variability in array data: Probe level uncertainties are systematically lower for arrays with large numbers of expressed genes. While we offer no molecular level explanation for this systematic variability, that it could be exploited in a suitable similarity metric is a useful observation in itself. We further show preliminary results that working with binary data considerably reduces variability in the results across choice of algorithms in the preprocessing stages of microarray analysis.展开更多
Exoplants of tomato(Lycopersicon esculentum) leaf were transformed with Ti plasmids using binary vector system.After screening.with selection culture, kanamycin-resistant seedling were obtained from callus. Molecular ...Exoplants of tomato(Lycopersicon esculentum) leaf were transformed with Ti plasmids using binary vector system.After screening.with selection culture, kanamycin-resistant seedling were obtained from callus. Molecular hybridization proved the integration of Km gene into plant cell genome via A.tumefaciens. Higher activity of Nos-NPTase was demonstrated in the transformed plant,thus confirming the successful expression of the resistance gene in recipient cells.展开更多
A chimeric gene, Bt29K, composed of coding sequences of activated Cry1Ac insecticidal protein and an endoplasm reticulum-retarding signal peptide, was synthesized. A plant expression vector containing two expression c...A chimeric gene, Bt29K, composed of coding sequences of activated Cry1Ac insecticidal protein and an endoplasm reticulum-retarding signal peptide, was synthesized. A plant expression vector containing two expression cassettes for the Bt29K and API-B genes was constructed. These two insect-resistant genes were transferred into two cotton ( Gossypium hirsutum L.) varieties ( or lines) via Agrobacterium-mediated transformation and nine homozygous transgenic cotton lines showing a mortality of 90.0% - 99.7% to cotton ballworm (Heliothis armigera) larvae and good agronomic traits were selected through six generations. Molecular biology analysis revealed that one or two copies of the insecticidal protein genes were integrated into the transgenic cotton genome and activated Cry1Ac and API-B protein expression was at a level of 0.17% and 0.09% of the total soluble protein in the transgenic cotton leaves, respectively. Comparison of the insect-resistance of the homozygous lines expressing the activated chimeric Cry1Ac and API-B with that expressing Cry1Ac only revealed that the insect-resistance of the former is apparently higher than the latter. These results also indicate that the strategy to construct a plant expression vector expressing two different insect-resistant genes reported here is reasonable.展开更多
In order to investigate the possibility and efficiency of exogenous gene spread in nature and potential ecological risk of transgenic rice, as well as analyze the effect of exogenous Bt gene insertion on ecological fi...In order to investigate the possibility and efficiency of exogenous gene spread in nature and potential ecological risk of transgenic rice, as well as analyze the effect of exogenous Bt gene insertion on ecological fitness of transgenic rice plants, a experiment was carried out with three insect-resistant Bt transgenic rice cultivars Bt63, R1 and R2 and one conventional rice line 11-838 as experimental materials, the insect-resistant transgenic and non-transgenic rice plants were inter- cropped pair-wisely under high and low insect-infestation pressures, and the vegeta- tive growth, seed-setting and the resistance to rice stem borers were compared be- tween transgenic and non-transgenic lines. According to the experimental results, both the tiller number and fresh weight of Bt transgenic rice plants under low insect- infestation pressure showed no significant differences compared with the control, but the plant height, spike length and spike weight were all lower than those of non- transgenic rice plant, and Bt63 and R2 were significantly different compared with the control. On the contrary, under high insect-infestation pressure, the tiller number, spike length and spike weight of three Bt transgenic rice cultivars were significantly higher than those of the control, while the plant height showed different fitness ef- fects among various transgenic rice cultivars, which might be related to the charac- teristics of the receptive cultivars. The individual filled grain number and 1 000-grain weight of three transgenic rice cultivars showed no significant difference compared with the control under two different insect-infestation pressures, suggesting that the effect of exogenous Bt gene on seed setting was not significant. Under insect-infes- tation pressure, the resistance of three Bt transgenic rice cultivars against rice stem borer was significantly superior to non-transgenic rice, indicating that the effect of exogenous Bt gene on insect resistance of receptive plants was distinctly. Further- more, experimental results showed that the fitness cost of Bt transgenic rice was rel- atively low, which implied that exogenous Bt gene in insect-resistant transgenic rice might escape under certain environmental conditions, but this risk was very low.展开更多
A cDNA library was constructed with 1.5×10~6 pfu from rice immature seeds,fromwhich a cDNA clone for rice thiol proteinase inhibitor,oryzacystatin(OC),was isolated byscreening with synthesized oligodeoxynucleotid...A cDNA library was constructed with 1.5×10~6 pfu from rice immature seeds,fromwhich a cDNA clone for rice thiol proteinase inhibitor,oryzacystatin(OC),was isolated byscreening with synthesized oligodeoxynucleotide probe,which contained a 309bp open read-ing frame,84bp 5′-end noncoding region and a poly(A)signal AATAAA at the 3′-end fol-lowed by 31Nt poly(A).Then the coding region of OC was amplified and inserted into thedownstream of λP_RP_L promoter for thermal-inducible expression in E.coli.Shifting the cul-ture temperature from 30℃ to 42℃ led to a high level expression of OC,which exhibited adistinct band of 12.0 kDa and accounted for at least 10% of the total soluble proteins fromSDS-PAGE.The papain-inhibitory activity of the expressed OC was further confirmed.展开更多
Gene regulatory network (GRN) inference from gene expression data remains a big challenge in system biology. In this paper, flexible neural tree (FNT) model is proposed as a binary classifier for inference of gene reg...Gene regulatory network (GRN) inference from gene expression data remains a big challenge in system biology. In this paper, flexible neural tree (FNT) model is proposed as a binary classifier for inference of gene regulatory network. A novel tree-based evolutionary algorithm and firefly algorithm (FA) are used to optimize the structure and parameters of FNT model, respectively.The two E.coli networks are used to test FNT model and the results reveal that FNT model performs better than state-of-the-art unsupervised and supervised learning methods.展开更多
Genetic and expressional stability of Bt toxin gene is crucial for the breeding of insect-resistant transgenic cotton varieties and their commercialization. Genomic Southern blot analysis of R3, R4 and R5 generations ...Genetic and expressional stability of Bt toxin gene is crucial for the breeding of insect-resistant transgenic cotton varieties and their commercialization. Genomic Southern blot analysis of R3, R4 and R5 generations of bivalent transgenic insect-resistant cotton plants was done in order to determine the integration, the copy number and the inheritance stability of Bt toxin gene in the transgenic cotton plants. The results indicated that there was a 4.7 kb positive band in the Southern blot when the genomic DNA of the bivalent transgenic insect-resistant cotton plants and the positive control (the plasmid) were digested with HindⅢ respectively. This result proved that the Bt toxin gene had been integrated into the genome of the cotton in full length. There is only one XhoⅠ restriction site in the Bt toxin gene. Southern blot analysis indicated that many copies of Bt toxin gene had been integrated into the genome of the cotton when the genomic DNA of transgenic plants was digested with XhoⅠ. Among them, there were four copies (about 17.7, 8, 5.5 and 4.7 kb in size) existing in all the tested plants of R3, R4 and R5 generations. The preliminary conclusion was that there were more than four copies of Bt toxin gene integrated into the genome of the cotton, among them, more than one copy can express and inherit steadily. This result provides a scientific basis for the breeding of the bivalent insect-resis- tant transgenic cotton plants and its commercialization.展开更多
Transgenic poplar(Populus alba×P.glandulosa cv`84k’) plants with the coleopterous insect resistant genes (BtCry3A and OC-I)were obtained. The transgenic nature of these plants was confirmed by PCR amplification ...Transgenic poplar(Populus alba×P.glandulosa cv`84k’) plants with the coleopterous insect resistant genes (BtCry3A and OC-I)were obtained. The transgenic nature of these plants was confirmed by PCR amplification and dot hybridization. The transgenic poplar’s toxicity towards the Anoplophora glabripennis larvae was assessed on two year-old selected plants in laboratory conditions. The results indicated that the transgenic lines BOGA-38 and BOGA-39 were deleterious for A. glabripennis larvae, and BOGA-5、BOGA-31、BOGA-38、BOGA-39 could inhabit the growth of A. glabripennis larvae. BOGA-39 was the most toxic one among the transgenic lines, with (41.18 %) corected mortality rate and 78.90 % growth inhabit rate for the larvae.展开更多
基金Supported by Project of Common Safety Assessment Technology for Genetically Modified Organisms of the Ministry of Agriculture of PRC(2011ZX08011-006)Project of Protection and Utilization of Agricultural Biological Resources"Intrusion Detection of Alien Species"~~
文摘[Objective] This study aimed to investigate the frequency of exogenous gene flow to non-transgenic conventional rice cultivars and assess the potential risks of marker-free of insect-resistant transgenic rice to agricultural ecological environment. [Method] Insect-resistant transgenic rice variety HUAHUI No.1 was planted as the experimental material and surrounded by several non-transgenic conventional rice cultivars. F1 non-transgenic rice seeds were collected according to different distances and identified by using PCR technology, the frequency of exogenous gene flow from insect-resistant transgenic rice to non-transgenic conventional rice cultivars was counted and analyzed. [Result] The average frequency of exogenous Bt gene flow to P13381 and CHUNJIANG063 was 0. Transgene flow occurred to varying degrees from insect-resistant transgenic rice HUAHUI No.1 to several non-transgenic rice lines including HEX122-2, TIANXlANG, MINGHUI63 and Pl157, with the maximum average gene flow frequency of 0.875%. The frequency of gene flow was gradually reduced with the increase of distance, and the average transgene flow frequency de- creased to 0 in all the sampling points 7 m away from transgenic rice material. [Conclusion] This study revealed that the exogenous gene flow frequency of insect-re- sistant transgenic rice variety HUAHUI No.1 was very low, leading to very small risk to the eco-environment. Rational distribution in the field for physical isolation, keeping the appropriate distance and scientific farming arrangement to avoid the synchronization of flowering can effectively control the exogenous gene flow from transgenic rice and reduce he ecological risks caused by transgene escape.
基金Supported by Strategic Leading Science and Technology Project of Chinese Academy of Sciences(XDA28130504)Special Project of Agricultural Science and Technology Innovation Leaping Project of Heilongjiang Academy of Agricultural Sciences(HNK2019CX14)Scientific Research Fund Project of Heilongjiang Provincial Scientific Research Institutes(CZKYF2021C008)。
文摘In order to promote the research of transgenic insect-resistant maize,the target gene were transferred into maize material Hi-Ⅱ by Agrobacterium-mediated genetic transformation of maize embryos,and maize plants with CryNGc insect-resistant genes were cultured by explant infection,co-culture and differentiation screening to study the genetic expression and resistance of exogenous genes in the offspring.The results showed that the infection effect was the best when the size of young maize embryo was 1.2-1.8 mm.Ten positive transformed plants with CryNGc insect-resistant genes were successfully obtained,and the transformation efficiency was 1.428‰.
文摘Rxol cloned from maize is a non-host gene resistant to bacterial leaf streak of rice. pCAMBIA1305-1 with Rxo1 was digested with Sca I and NgoM IV and the double right-border binary vector pMNDRBBin6 was digested with Hpa I and Xma I. pMNDRBBin6 carrying the gene Rxo1 was acquired by ligation of blunt-end and cohesive end. The results of PCR, restriction enzyme analysis and sequencing indicated that the Rxo1 gene had been cloned into pMNDRBBin6. This double right-border binary vector, named as pMNDRBBin6-Rxol, will play a role in breeding marker-free plants resistant to bacterial leaf streak of rice by genetic transformation.
文摘Microarray gene expression measurements are reported, used and archived usually to high numerical precision. However, properties of mRNA molecules, such as their low stability and availability in small copy numbers, and the fact that measurements correspond to a population of cells, rather than a single cell, makes high precision meaningless. Recent work shows that reducing measurement precision leads to very little loss of information, right down to binary levels. In this paper we show how properties of binary spaces can be useful in making inferences from microarray data. In particular, we use the Tanimoto similarity metric for binary vectors, which has been used effectively in the Chemoinformatics literature for retrieving chemical compounds with certain functional properties. This measure, when incorporated in a kernel framework, helps recover any information lost by quantization. By implementing a spectral clustering framework, we further show that a second reason for high performance from the Tanimoto metric can be traced back to a hitherto unnoticed systematic variability in array data: Probe level uncertainties are systematically lower for arrays with large numbers of expressed genes. While we offer no molecular level explanation for this systematic variability, that it could be exploited in a suitable similarity metric is a useful observation in itself. We further show preliminary results that working with binary data considerably reduces variability in the results across choice of algorithms in the preprocessing stages of microarray analysis.
文摘Exoplants of tomato(Lycopersicon esculentum) leaf were transformed with Ti plasmids using binary vector system.After screening.with selection culture, kanamycin-resistant seedling were obtained from callus. Molecular hybridization proved the integration of Km gene into plant cell genome via A.tumefaciens. Higher activity of Nos-NPTase was demonstrated in the transformed plant,thus confirming the successful expression of the resistance gene in recipient cells.
文摘A chimeric gene, Bt29K, composed of coding sequences of activated Cry1Ac insecticidal protein and an endoplasm reticulum-retarding signal peptide, was synthesized. A plant expression vector containing two expression cassettes for the Bt29K and API-B genes was constructed. These two insect-resistant genes were transferred into two cotton ( Gossypium hirsutum L.) varieties ( or lines) via Agrobacterium-mediated transformation and nine homozygous transgenic cotton lines showing a mortality of 90.0% - 99.7% to cotton ballworm (Heliothis armigera) larvae and good agronomic traits were selected through six generations. Molecular biology analysis revealed that one or two copies of the insecticidal protein genes were integrated into the transgenic cotton genome and activated Cry1Ac and API-B protein expression was at a level of 0.17% and 0.09% of the total soluble protein in the transgenic cotton leaves, respectively. Comparison of the insect-resistance of the homozygous lines expressing the activated chimeric Cry1Ac and API-B with that expressing Cry1Ac only revealed that the insect-resistance of the former is apparently higher than the latter. These results also indicate that the strategy to construct a plant expression vector expressing two different insect-resistant genes reported here is reasonable.
基金Supported by the Spring Sunshine Plan of PRC Ministry of Education for Scholars Studied in France,office of Guizhou Science and Technology [(2011)3021]~~
文摘In order to investigate the possibility and efficiency of exogenous gene spread in nature and potential ecological risk of transgenic rice, as well as analyze the effect of exogenous Bt gene insertion on ecological fitness of transgenic rice plants, a experiment was carried out with three insect-resistant Bt transgenic rice cultivars Bt63, R1 and R2 and one conventional rice line 11-838 as experimental materials, the insect-resistant transgenic and non-transgenic rice plants were inter- cropped pair-wisely under high and low insect-infestation pressures, and the vegeta- tive growth, seed-setting and the resistance to rice stem borers were compared be- tween transgenic and non-transgenic lines. According to the experimental results, both the tiller number and fresh weight of Bt transgenic rice plants under low insect- infestation pressure showed no significant differences compared with the control, but the plant height, spike length and spike weight were all lower than those of non- transgenic rice plant, and Bt63 and R2 were significantly different compared with the control. On the contrary, under high insect-infestation pressure, the tiller number, spike length and spike weight of three Bt transgenic rice cultivars were significantly higher than those of the control, while the plant height showed different fitness ef- fects among various transgenic rice cultivars, which might be related to the charac- teristics of the receptive cultivars. The individual filled grain number and 1 000-grain weight of three transgenic rice cultivars showed no significant difference compared with the control under two different insect-infestation pressures, suggesting that the effect of exogenous Bt gene on seed setting was not significant. Under insect-infes- tation pressure, the resistance of three Bt transgenic rice cultivars against rice stem borer was significantly superior to non-transgenic rice, indicating that the effect of exogenous Bt gene on insect resistance of receptive plants was distinctly. Further- more, experimental results showed that the fitness cost of Bt transgenic rice was rel- atively low, which implied that exogenous Bt gene in insect-resistant transgenic rice might escape under certain environmental conditions, but this risk was very low.
基金Supported by Prime Minister FouNdationthe High Techriology Research and Development Programme of ChinaRockefeller Foun-dation.
文摘A cDNA library was constructed with 1.5×10~6 pfu from rice immature seeds,fromwhich a cDNA clone for rice thiol proteinase inhibitor,oryzacystatin(OC),was isolated byscreening with synthesized oligodeoxynucleotide probe,which contained a 309bp open read-ing frame,84bp 5′-end noncoding region and a poly(A)signal AATAAA at the 3′-end fol-lowed by 31Nt poly(A).Then the coding region of OC was amplified and inserted into thedownstream of λP_RP_L promoter for thermal-inducible expression in E.coli.Shifting the cul-ture temperature from 30℃ to 42℃ led to a high level expression of OC,which exhibited adistinct band of 12.0 kDa and accounted for at least 10% of the total soluble proteins fromSDS-PAGE.The papain-inhibitory activity of the expressed OC was further confirmed.
文摘Gene regulatory network (GRN) inference from gene expression data remains a big challenge in system biology. In this paper, flexible neural tree (FNT) model is proposed as a binary classifier for inference of gene regulatory network. A novel tree-based evolutionary algorithm and firefly algorithm (FA) are used to optimize the structure and parameters of FNT model, respectively.The two E.coli networks are used to test FNT model and the results reveal that FNT model performs better than state-of-the-art unsupervised and supervised learning methods.
基金supported by the National"863"High-Tech Program,the Special Foundation of the Ministry of Agriculture for"Developing Cotton Production"and the Chinese Foundation for Agriculture Science and Education.
文摘Genetic and expressional stability of Bt toxin gene is crucial for the breeding of insect-resistant transgenic cotton varieties and their commercialization. Genomic Southern blot analysis of R3, R4 and R5 generations of bivalent transgenic insect-resistant cotton plants was done in order to determine the integration, the copy number and the inheritance stability of Bt toxin gene in the transgenic cotton plants. The results indicated that there was a 4.7 kb positive band in the Southern blot when the genomic DNA of the bivalent transgenic insect-resistant cotton plants and the positive control (the plasmid) were digested with HindⅢ respectively. This result proved that the Bt toxin gene had been integrated into the genome of the cotton in full length. There is only one XhoⅠ restriction site in the Bt toxin gene. Southern blot analysis indicated that many copies of Bt toxin gene had been integrated into the genome of the cotton when the genomic DNA of transgenic plants was digested with XhoⅠ. Among them, there were four copies (about 17.7, 8, 5.5 and 4.7 kb in size) existing in all the tested plants of R3, R4 and R5 generations. The preliminary conclusion was that there were more than four copies of Bt toxin gene integrated into the genome of the cotton, among them, more than one copy can express and inherit steadily. This result provides a scientific basis for the breeding of the bivalent insect-resis- tant transgenic cotton plants and its commercialization.
基金国家转基因植物研究与产业化专项课题--优质高产抗干旱耐盐碱杨树基因工程育种研究(J2002 B 004)
文摘Transgenic poplar(Populus alba×P.glandulosa cv`84k’) plants with the coleopterous insect resistant genes (BtCry3A and OC-I)were obtained. The transgenic nature of these plants was confirmed by PCR amplification and dot hybridization. The transgenic poplar’s toxicity towards the Anoplophora glabripennis larvae was assessed on two year-old selected plants in laboratory conditions. The results indicated that the transgenic lines BOGA-38 and BOGA-39 were deleterious for A. glabripennis larvae, and BOGA-5、BOGA-31、BOGA-38、BOGA-39 could inhabit the growth of A. glabripennis larvae. BOGA-39 was the most toxic one among the transgenic lines, with (41.18 %) corected mortality rate and 78.90 % growth inhabit rate for the larvae.