Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 sele...Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3.展开更多
Non-thermal plasma(NTP)has been demonstrated as one of the promising technologies that can degrade volatile organic compounds(VOCs)under ambient condition.However,one of the key challenges of VOCs degradation in NTP i...Non-thermal plasma(NTP)has been demonstrated as one of the promising technologies that can degrade volatile organic compounds(VOCs)under ambient condition.However,one of the key challenges of VOCs degradation in NTP is its relatively low mineralization rate,which needs to be addressed by introducing catalysts.Therefore,the design and optimization of catalysts have become the focus of NTP coupling catalysis research.In thiswork,a series of two-dimensional nanosheet Co-Ni metal oxides were synthesized by microwave method and investigated for the catalytic oxidation of benzene in an NTP-catalysis coupling system.Among them,Co_(2)Ni_(1)O_(x)achieves 60%carbon dioxide(CO_(2))selectivity(SCO_(2))when the benzene removal efficiency(REbenzene)reaches more than 99%,which is a significant enhancement compared with the CO_(2)selectivity obtained without any catalysts(38%)under the same input power.More intriguingly,this SCO_(2)is also significantly higher than that of single metal oxides,NiO or Co_(3)O_(4),which is only around 40%.Such improved performance of this binary metal oxide catalyst is uniquely attributed to the synergistic effects of Co and Ni in Co_(2)Ni_(1)O_(x)catalyst.The introduction of Co_(2)Ni_(1)O_(x)was found to promote the generation of acrolein significantly,one of the key intermediates found in NTP alone system reported previously,suggest the benzene ring open reaction is promoted.Compared with monometallic oxides NiO and Co_(3)O_(4),Co_(2)Ni_(1)O_(x)also shows higher active oxygen proportion,better oxygenmobility,and stronger low-temperature redox capability.The above factors result in the improved catalytic performance of Co_(2)Ni_(1)O_(x)in the NTP coupling removal of benzene.展开更多
In search of effective and stable bifunctional electrocatalyst for electrocatalytic water splitting is still a major challenge for the highly efficient H_(2) production.Here,we reported a facile strategy to design hig...In search of effective and stable bifunctional electrocatalyst for electrocatalytic water splitting is still a major challenge for the highly efficient H_(2) production.Here,we reported a facile strategy to design high-indexed Cu_(3)Pd_(13)_S_(7) nanoparticles(NPs)in situ synthesized on the three-dimensional(3D)carbon nanofibers(CNFs)by combining electrospinning and chemical vapor deposition(CVD)technology.The high-index facets with abundant active sites,the 3D architecture CNFs with high specific surface area and synergistic effect of Cu-Pd-S bonds with strong electron couplings together promote the elec-trocatalytic performance.The Cu_(3)Pd_(13)_S_(7)/CNFs shows excellent electrocatalytic activity with low overpotentials of 52 mV(10 mA cm^(−2))for hydrogen evolution reaction(HER)and 240 mV(10 mA cm^(−2))for oxygen evolution reaction(OER).The excellent protection of Cu_(3)Pd_(13)_S_(7) by CNFs from aggregation and electrolyte corrosion lead to the high stability of Cu_(3)Pd_(13)_S_(7)/CNFs under acidic and alkaline conditions.展开更多
Binary metal chalcogenides(BMCs)have shown better electrochemical performance compared with their mono metal counterparts owing to their abundant phase interfaces,higher active sites,faster electrochemical kinetics an...Binary metal chalcogenides(BMCs)have shown better electrochemical performance compared with their mono metal counterparts owing to their abundant phase interfaces,higher active sites,faster electrochemical kinetics and higher electronic conductivity.Nevertheless,their performance still undergoes adverse decline during electrochemical processes mainly due to poor intrinsic ionic conductivities,large volume expansions,and structural agglomeration and fracture.To tackle these problems,various strategies have been applied to engineer the BMC nanostructures to obtain optimized electrode materials.However,the lack of understanding of the electrochemical response of BMCs still hinders their large-scale application.This review not only highlights the recent progress and development in the preparation of BMC-based electrode materials but also explains the kinetics to further understand the relation between structure and performance.It will also explain the engineering of BMCs through nanostructuring and formation of their hybrid structures with various carbonaceous materials and three-dimensional(3 D)templates.The review will discuss the detailed working mechanism of BMC-based nanostructures in various electrochemical energy storage(EES)systems including supercapacitors,metal-ion batteries,metal-air batteries,and alkaline batteries.In the end,major challenges and prospective solutions for the development of BMCs in EES devices are also outlined.We believe that the current review will provide a guideline for tailoring BMCs for better electrochemical devices.展开更多
In the present article, we report the screening-dependent study of the superconducting state parameters (SSPs), viz. electron-phonon coupling strength A, Coulomb pseudopotential μ^*, transition temperature TC, iso...In the present article, we report the screening-dependent study of the superconducting state parameters (SSPs), viz. electron-phonon coupling strength A, Coulomb pseudopotential μ^*, transition temperature TC, isotope effect exponent a, and effective interaction strength No V of 3d-band transition metals binary alloys superconductors have been made extensively in the present work using a model potential formalism and employing the pseudo-alloy-atom (PAA) model for the first time. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used in the present investigation to study the screening influence on the aforesaid properties. The present results of the SSPs obtained from H-screening are found in qualitative agreement with the available experimental data wherever exist.展开更多
The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential...The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential formalism. For description of the structure, well known Percus-Yevick (PY) hard sphere model is used as a reference system. By applying a variation method the best hard core diameters have been found which correspond to minimum free energy. With this procedure the thermodynamic properties such as entropy and heat of mixing have been computed. The influence of local field correction function viz; Hartree (H), Taylor (T), lehimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) is also investigated. The computed results of the excess entropy compares favourably in the case of liquid alloys while the agreement with experiment is poor in the case of heats of mixing. This may be due to the sensitivity of the heats of mixing with the potential parameters and the dielectric function.展开更多
The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based so...The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based solids with oxides from alkali (Li2O), alkaline earth (CaO), and transition metal groups (WO3 or MnO). The presence of the peroxide (O2-2) active sites on the Li2O2, revealed by Raman spectroscopy, may be the key factor in the enhanced performance of some of the Li2O/MgO catalysts. The high reducibility of the CeO2 catalyst, an important factor in the CO2-OCM catalyst activity, may be enhanced by the presence of manganese oxide species. The manganese oxide species increases oxygen mobility and oxygen vacancies in the CeO2 catalyst. Raman and Fourier Transform Infra Red (FT-IR) spectroscopies revealed the presence of lattice vibrations of metal-oxygen bondings and active sites in which the peaks corresponding to the bulk crystalline structures of Li2O, CaO, WO3 and MnO are detected. The performance of 5%MnO/15%CaO/CeO2 catalyst is the most potential among the CeO2-based catalysts, although lower than the 2%Li2O/MgO catalyst. The 2%Li2O/MgO catalyst showed the most promising C2+ hydrocarbons selectivity and yield at 98.0% and 5.7%, respectively.展开更多
Because of the intensified electrochemical activities,mixed metal oxides as a representative for pseudocapacitive materials play a key role for high performance supercapacitor electrodes.Nevertheless,low ion and elect...Because of the intensified electrochemical activities,mixed metal oxides as a representative for pseudocapacitive materials play a key role for high performance supercapacitor electrodes.Nevertheless,low ion and electron transfer rate and poor cycling performance in the electrode practically restrict further promotion of their electrochemical performance.In order to offset the defect,a novel copper(Cu)foamsupported nickel molybdate nanosheet decorated carbon nanotube wrapped copper oxide nanowire array(NiMoO4 NSs-CNTs-CuO NWAs/Cu foam)flexible electrode is constructed.The as-prepared electrode demonstrates a unique core-shell holey nanostructure with a large active surface area,which can provide a large number of active sites for redox reactions.Besides,the CNTs networks supply improved conductivity,which can hasten electron transport.Through this simple and efficient design method,the spatial distribution of each component in the flexible electrode is more orderly,short and fast electron transport path with low intrinsic resistance.As a result,the NiMoO4 NSs-CNTs-CuO NWAs/Cu foam as an adhesiveless supercapacitor electrode material exhibits excellent ene rgy storage perfo rmance with high specific areal capacitance of 23.40 F cm^(-2)at a current density of 2 mA cm^(-2),which outperforms most of the flexible electrodes re ported recently.The assembled asymmetric supercapacitor demonstrates an energy density up to 96.40 mW h cm^(-3)and a power density up to 0.4 W cm^(-3)under a working voltage window of 1.7 V.In addition,outstanding flexibility of up to 100°bend and good cycling stability with the capacitance retention of 82.53%after 10,000 cycles can be obtained.展开更多
文摘Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3.
基金supported by the National Key Research and Development Program of China(No.2017YFE0127500)National Natural Science Foundation of China(No.U1832155).
文摘Non-thermal plasma(NTP)has been demonstrated as one of the promising technologies that can degrade volatile organic compounds(VOCs)under ambient condition.However,one of the key challenges of VOCs degradation in NTP is its relatively low mineralization rate,which needs to be addressed by introducing catalysts.Therefore,the design and optimization of catalysts have become the focus of NTP coupling catalysis research.In thiswork,a series of two-dimensional nanosheet Co-Ni metal oxides were synthesized by microwave method and investigated for the catalytic oxidation of benzene in an NTP-catalysis coupling system.Among them,Co_(2)Ni_(1)O_(x)achieves 60%carbon dioxide(CO_(2))selectivity(SCO_(2))when the benzene removal efficiency(REbenzene)reaches more than 99%,which is a significant enhancement compared with the CO_(2)selectivity obtained without any catalysts(38%)under the same input power.More intriguingly,this SCO_(2)is also significantly higher than that of single metal oxides,NiO or Co_(3)O_(4),which is only around 40%.Such improved performance of this binary metal oxide catalyst is uniquely attributed to the synergistic effects of Co and Ni in Co_(2)Ni_(1)O_(x)catalyst.The introduction of Co_(2)Ni_(1)O_(x)was found to promote the generation of acrolein significantly,one of the key intermediates found in NTP alone system reported previously,suggest the benzene ring open reaction is promoted.Compared with monometallic oxides NiO and Co_(3)O_(4),Co_(2)Ni_(1)O_(x)also shows higher active oxygen proportion,better oxygenmobility,and stronger low-temperature redox capability.The above factors result in the improved catalytic performance of Co_(2)Ni_(1)O_(x)in the NTP coupling removal of benzene.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant nos.51803077,52073124)Natural Science Foundation of Jiangsu Province(Grant nos.BK20180627)+3 种基金Postdoctoral Science Foundation of China(2018M630517,2019T120389)the MOE and SAFEA,111 Project(B13025)the national first-class discipline program of Light Industry Technology and Engineering(LITE2018-19)the Fundamental Research Funds for the Central Universities.
文摘In search of effective and stable bifunctional electrocatalyst for electrocatalytic water splitting is still a major challenge for the highly efficient H_(2) production.Here,we reported a facile strategy to design high-indexed Cu_(3)Pd_(13)_S_(7) nanoparticles(NPs)in situ synthesized on the three-dimensional(3D)carbon nanofibers(CNFs)by combining electrospinning and chemical vapor deposition(CVD)technology.The high-index facets with abundant active sites,the 3D architecture CNFs with high specific surface area and synergistic effect of Cu-Pd-S bonds with strong electron couplings together promote the elec-trocatalytic performance.The Cu_(3)Pd_(13)_S_(7)/CNFs shows excellent electrocatalytic activity with low overpotentials of 52 mV(10 mA cm^(−2))for hydrogen evolution reaction(HER)and 240 mV(10 mA cm^(−2))for oxygen evolution reaction(OER).The excellent protection of Cu_(3)Pd_(13)_S_(7) by CNFs from aggregation and electrolyte corrosion lead to the high stability of Cu_(3)Pd_(13)_S_(7)/CNFs under acidic and alkaline conditions.
基金supported by the National Natural Science Fund for Distinguished Young Scholars(52025133)the Tencent Foundation through the XPLORER PRIZE,Beijing Natural Science Foundation(JQ18005)+2 种基金the National Natural Science Foundation of China(52125307 and 11974023)the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnic University(NWPU)(SKLSP202004)the Key Area R&D Program of Guangdong Province(2018B030327001 and 2018B010109009)。
文摘Binary metal chalcogenides(BMCs)have shown better electrochemical performance compared with their mono metal counterparts owing to their abundant phase interfaces,higher active sites,faster electrochemical kinetics and higher electronic conductivity.Nevertheless,their performance still undergoes adverse decline during electrochemical processes mainly due to poor intrinsic ionic conductivities,large volume expansions,and structural agglomeration and fracture.To tackle these problems,various strategies have been applied to engineer the BMC nanostructures to obtain optimized electrode materials.However,the lack of understanding of the electrochemical response of BMCs still hinders their large-scale application.This review not only highlights the recent progress and development in the preparation of BMC-based electrode materials but also explains the kinetics to further understand the relation between structure and performance.It will also explain the engineering of BMCs through nanostructuring and formation of their hybrid structures with various carbonaceous materials and three-dimensional(3 D)templates.The review will discuss the detailed working mechanism of BMC-based nanostructures in various electrochemical energy storage(EES)systems including supercapacitors,metal-ion batteries,metal-air batteries,and alkaline batteries.In the end,major challenges and prospective solutions for the development of BMCs in EES devices are also outlined.We believe that the current review will provide a guideline for tailoring BMCs for better electrochemical devices.
文摘In the present article, we report the screening-dependent study of the superconducting state parameters (SSPs), viz. electron-phonon coupling strength A, Coulomb pseudopotential μ^*, transition temperature TC, isotope effect exponent a, and effective interaction strength No V of 3d-band transition metals binary alloys superconductors have been made extensively in the present work using a model potential formalism and employing the pseudo-alloy-atom (PAA) model for the first time. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used in the present investigation to study the screening influence on the aforesaid properties. The present results of the SSPs obtained from H-screening are found in qualitative agreement with the available experimental data wherever exist.
文摘The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential formalism. For description of the structure, well known Percus-Yevick (PY) hard sphere model is used as a reference system. By applying a variation method the best hard core diameters have been found which correspond to minimum free energy. With this procedure the thermodynamic properties such as entropy and heat of mixing have been computed. The influence of local field correction function viz; Hartree (H), Taylor (T), lehimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) is also investigated. The computed results of the excess entropy compares favourably in the case of liquid alloys while the agreement with experiment is poor in the case of heats of mixing. This may be due to the sensitivity of the heats of mixing with the potential parameters and the dielectric function.
文摘The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based solids with oxides from alkali (Li2O), alkaline earth (CaO), and transition metal groups (WO3 or MnO). The presence of the peroxide (O2-2) active sites on the Li2O2, revealed by Raman spectroscopy, may be the key factor in the enhanced performance of some of the Li2O/MgO catalysts. The high reducibility of the CeO2 catalyst, an important factor in the CO2-OCM catalyst activity, may be enhanced by the presence of manganese oxide species. The manganese oxide species increases oxygen mobility and oxygen vacancies in the CeO2 catalyst. Raman and Fourier Transform Infra Red (FT-IR) spectroscopies revealed the presence of lattice vibrations of metal-oxygen bondings and active sites in which the peaks corresponding to the bulk crystalline structures of Li2O, CaO, WO3 and MnO are detected. The performance of 5%MnO/15%CaO/CeO2 catalyst is the most potential among the CeO2-based catalysts, although lower than the 2%Li2O/MgO catalyst. The 2%Li2O/MgO catalyst showed the most promising C2+ hydrocarbons selectivity and yield at 98.0% and 5.7%, respectively.
基金supported by the National Natural Science Foundation of China(Nos.51673117,51973118,and 21805193)the Science and Technology Innovation Commission of Shenzhen(Nos.JCYJ20170818093832350,JCYJ20170818112409808,JSGG20170824112840518,JCYJ20180507184711069,JCYJ20170818100112531,JCYJ20170817094628397,and JCYJ20180305125319991)+1 种基金the Key-Area Research and Development Program of Guangdong Province(Nos.2019B010929002 and 2019B010941001)the China Postdoctoral Science Foundation(No.2019M650212)。
文摘Because of the intensified electrochemical activities,mixed metal oxides as a representative for pseudocapacitive materials play a key role for high performance supercapacitor electrodes.Nevertheless,low ion and electron transfer rate and poor cycling performance in the electrode practically restrict further promotion of their electrochemical performance.In order to offset the defect,a novel copper(Cu)foamsupported nickel molybdate nanosheet decorated carbon nanotube wrapped copper oxide nanowire array(NiMoO4 NSs-CNTs-CuO NWAs/Cu foam)flexible electrode is constructed.The as-prepared electrode demonstrates a unique core-shell holey nanostructure with a large active surface area,which can provide a large number of active sites for redox reactions.Besides,the CNTs networks supply improved conductivity,which can hasten electron transport.Through this simple and efficient design method,the spatial distribution of each component in the flexible electrode is more orderly,short and fast electron transport path with low intrinsic resistance.As a result,the NiMoO4 NSs-CNTs-CuO NWAs/Cu foam as an adhesiveless supercapacitor electrode material exhibits excellent ene rgy storage perfo rmance with high specific areal capacitance of 23.40 F cm^(-2)at a current density of 2 mA cm^(-2),which outperforms most of the flexible electrodes re ported recently.The assembled asymmetric supercapacitor demonstrates an energy density up to 96.40 mW h cm^(-3)and a power density up to 0.4 W cm^(-3)under a working voltage window of 1.7 V.In addition,outstanding flexibility of up to 100°bend and good cycling stability with the capacitance retention of 82.53%after 10,000 cycles can be obtained.