The objective of steganography is to hide message securely in cover objects for secret communication.How to design a secure steganographic algorithm is still major challenge in this re-search field.In this letter,deve...The objective of steganography is to hide message securely in cover objects for secret communication.How to design a secure steganographic algorithm is still major challenge in this re-search field.In this letter,developing secure steganography is formulated as solving a constrained IP(Integer Programming) problem,which takes the relative entropy of cover and stego distributions as the objective function.Furthermore,a novel method is introduced based on BPSO(Binary Particle Swarm Optimization) for achieving the optimal solution of this programming problem.Experimental results show that the proposed method can achieve excellent performance on preserving neighboring co-occurrence features for JPEG steganography.展开更多
Coordinated controller tuning of the boiler turbine unit is a challenging task due to the nonlinear and coupling characteristics of the system.In this paper,a new variant of binary particle swarm optimization (PSO) ...Coordinated controller tuning of the boiler turbine unit is a challenging task due to the nonlinear and coupling characteristics of the system.In this paper,a new variant of binary particle swarm optimization (PSO) algorithm,called probability based binary PSO (PBPSO),is presented to tune the parameters of a coordinated controller.The simulation results show that PBPSO can effectively optimize the control parameters and achieves better control performance than those based on standard discrete binary PSO,modified binary PSO,and standard continuous PSO.展开更多
The minimum weight dominating set problem (MWDSP) is an NP-hard problem with a lot of real-world applications. Several heuristic algorithms have been presented to produce good quality solutions. However, the solutio...The minimum weight dominating set problem (MWDSP) is an NP-hard problem with a lot of real-world applications. Several heuristic algorithms have been presented to produce good quality solutions. However, the solution time of them grows very quickly as the size of the instance increases. In this paper, we propose a binary particle swarm optimization (FBPSO) for solving the MWDSP approximately. Based on the characteristic of MWDSP, this approach designs a new position updating rule to guide the search to a promising area. An iterated greedy tabu search is used to enhance the solution quality quickly. In addition, several stochastic strategies are employed to diversify the search and prevent premature convergence. These methods maintain a good balance between the exploration and the exploitation. Experimental studies on 106 groups of 1 060 instances show that FBPSO is able to identify near optimal solutions in a short running time. The average deviation between the solutions obtained by FBPSO and the best known solutions is 0.441%. Moreover, the average solution time of FBPSO is much less than that of other existing algorithms. In particular, with the increasing of instance size, the solution time of FBPSO grows much more slowly than that of other existing algorithms.展开更多
Due to the size and complexity of power network and the cost of monitoring and telecommunication equipment, it is unfeasible to monitor the whole system variables. All system analyzers use voltages and currents of the...Due to the size and complexity of power network and the cost of monitoring and telecommunication equipment, it is unfeasible to monitor the whole system variables. All system analyzers use voltages and currents of the network. Thus, monitoring scheme plays a main role in system analysis, control, and protection. To monitor the whole system using distributed measurements, strategic placement of them is needed. This paper improves a topological circuit observation method to minimize essential monitors. Besides the observability under normal condition of power networks, the observability of abnormal network is considered. Consequently, a high level of system reliability is carried out. In terms of reliability constraint, identification of bad measurement data in a given measurement system by making theme sure to be detectable is well done. Furthermore, it is maintained by a certain level of reliability against the single-line outages. Thus, observability is satisfied if all possible single line outages are plausible. Consideration of these limitations clears the role of utilizing an optimization algorithm. Hence, particle swarm optimization (PSO) is used to minimize monitoring cost and removing unobser-vable states under abnormal condition, simultaneously. The algorithm is tested in IEEE 14 and 30-bus test systems and Iranian (Mazandaran) Regional Electric Company.展开更多
This paper presents an optimal proposed allocating procedure for hybrid wind energy combined with proton exchange membrane fuel cell (WE/PEMFC) system to improve the operation performance of the electrical distributio...This paper presents an optimal proposed allocating procedure for hybrid wind energy combined with proton exchange membrane fuel cell (WE/PEMFC) system to improve the operation performance of the electrical distribution system (EDS). Egypt has an excellent wind regime with wind speeds of about 10 m/s at many areas. The disadvantage of wind energy is its seasonal variations. So, if wind power is to supply a significant portion of the demand, either backup power or electrical energy storage (EES) system is needed to ensure that loads will be supplied in reliable way. So, the hybrid WE/PEMFC system is designed to completely supply a part of the Egyptian distribution system, in attempt to isolate it from the grid. However, the optimal allocation of the hybrid units is obtained, in order to enhance their benefits in the distribution networks. The critical buses that are necessary to install the hybrid WE/ PEMFC system, are chosen using sensitivity analysis. Then, the binary Crow search algorithm (BCSA), discrete Jaya algorithm (DJA) and binary particle swarm optimization (BPSO) techniques are proposed to determine the optimal operation of power systems using single and multi-objective functions (SOF/MOF). Then, the results of the three optimization techniques are compared with each other. Three sensitivity factors are employed in this paper, which are voltage sensitivity factor (VSF), active losses sensitivity factor (ALSF) and reactive losses sensitivity factor (RLSF). The effects of the sensitivity factors (SFs) on the SOF/MOF are studied. The improvement of voltage profile and minimizing active and reactive power losses of the EDS are considered as objective functions. Backward/forward sweep (BFS) method is used for the load flow calculations. The system load demand is predicted up to year 2022 for Mersi-Matrouh City as a part of Egyptian distribution network, and the design of the hybrid WE/PEMFC system is applied. The PEMFC system is designed considering simplified mathematical expressions. The economics of operation of both WE and PEMFC system are also presented. The results prove the capability of the proposed procedure to find the optimal allocation for the hybrid WE/PEMFC system to improve the system voltage profile and to minimize both active and reactive power losses for the EDS of Mersi-Matrough City.展开更多
Recently,as recognizing emotion has been one of the hallmarks of affective computing,more attention has been paid to physiological signals for emotion recognition.This paper presented an approach to emotion recognitio...Recently,as recognizing emotion has been one of the hallmarks of affective computing,more attention has been paid to physiological signals for emotion recognition.This paper presented an approach to emotion recognition using ElectroCardioGraphy(ECG) signals from multiple subjects.To collect reliable affective ECG data,we applied an arousal method by movie clips to make subjects experience specific emotions without external interference.Through precise location of P-QRS-T wave by continuous wavelet transform,an amount of ECG features was extracted sufficiently.Since feature selection is a combination optimization problem,Improved Binary Particle Swarm Optimization(IBPSO) based on neighborhood search was applied to search out effective features to improve classification results of emotion states with the help of fisher or K-Nearest Neighbor(KNN) classifier.In the experiment,it is shown that the approach is successful and the effective features got from ECG signals can express emotion states excellently.展开更多
In order to promote the development of the Internet of Things(IoT),there has been an increase in the coverage of the customer electric information acquisition system(CEIAS).The traditional fault location method for th...In order to promote the development of the Internet of Things(IoT),there has been an increase in the coverage of the customer electric information acquisition system(CEIAS).The traditional fault location method for the distribution network only considers the information reported by the Feeder Terminal Unit(FTU)and the fault tolerance rate is low when the information is omitted or misreported.Therefore,this study considers the influence of the distributed generations(DGs)for the distribution network.This takes the CEIAS as a redundant information source and solves the model by applying a binary particle swarm optimization algorithm(BPSO).The improved Dempster/S-hafer evidence theory(D-S evidence theory)is used for evidence fusion to achieve the fault section location for the distribution network.An example is provided to verify that the proposed method can achieve single or multiple fault locations with a higher fault tolerance.展开更多
The increasing integration of photovoltaic generators(PVGs) and the uneven economic development in different regions may cause the unbalanced spatial-temporal distribution of load demands in an urban distribution netw...The increasing integration of photovoltaic generators(PVGs) and the uneven economic development in different regions may cause the unbalanced spatial-temporal distribution of load demands in an urban distribution network(UDN). This may lead to undesired consequences, including PVG curtailment, load shedding, and equipment inefficiency, etc. Global dynamic reconfiguration provides a promising method to solve those challenges. However, the power flow transfer capabilities for different kinds of switches are diverse, and the willingness of distribution system operators(DSOs) to select them is also different. In this paper, we formulate a multi-objective dynamic reconfiguration optimization model suitable for multi-level switching modes to minimize the operation cost, load imbalance, and the PVG curtailment. The multi-level switching includes feeder-level switching, transformer-level switching, and substation-level switching. A novel load balancing index is devised to quantify the global load balancing degree at different levels. Then, a stochastic programming model based on selected scenarios is established to address the uncertainties of PVGs and loads. Afterward, the fuzzy c-means(FCMs) clustering is applied to divide the time periods of reconfiguration. Furthermore, the modified binary particle swarm optimization(BPSO)and Cplex solver are combined to solve the proposed mixed-integer second-order cone programming(MISOCP) model. Numerical results based on the 148-node and 297-node systems are obtained to validate the effectiveness of the proposed method.展开更多
基金Supported by the National Natural Science Foundation of China (No.60572111)
文摘The objective of steganography is to hide message securely in cover objects for secret communication.How to design a secure steganographic algorithm is still major challenge in this re-search field.In this letter,developing secure steganography is formulated as solving a constrained IP(Integer Programming) problem,which takes the relative entropy of cover and stego distributions as the objective function.Furthermore,a novel method is introduced based on BPSO(Binary Particle Swarm Optimization) for achieving the optimal solution of this programming problem.Experimental results show that the proposed method can achieve excellent performance on preserving neighboring co-occurrence features for JPEG steganography.
基金supported by Projects of Shanghai Science and Technology Community (No. 10ZR1411800,No. 08160705900,No. 08160512100)Shanghai University "the 11th Five-Year Plan"+1 种基金211 Construction ProjectMechatronics Engineering Innovation Group Project from Shanghai Education Commission
文摘Coordinated controller tuning of the boiler turbine unit is a challenging task due to the nonlinear and coupling characteristics of the system.In this paper,a new variant of binary particle swarm optimization (PSO) algorithm,called probability based binary PSO (PBPSO),is presented to tune the parameters of a coordinated controller.The simulation results show that PBPSO can effectively optimize the control parameters and achieves better control performance than those based on standard discrete binary PSO,modified binary PSO,and standard continuous PSO.
基金This work is supported partially by the National Natural Science Foundation of China under Grant No. 11301255, the Natural Science Foundation of Fujian Province of China under Grant No. 2016J01025, and the Program for New Century Excellent Talents in Fujian Province University.
文摘The minimum weight dominating set problem (MWDSP) is an NP-hard problem with a lot of real-world applications. Several heuristic algorithms have been presented to produce good quality solutions. However, the solution time of them grows very quickly as the size of the instance increases. In this paper, we propose a binary particle swarm optimization (FBPSO) for solving the MWDSP approximately. Based on the characteristic of MWDSP, this approach designs a new position updating rule to guide the search to a promising area. An iterated greedy tabu search is used to enhance the solution quality quickly. In addition, several stochastic strategies are employed to diversify the search and prevent premature convergence. These methods maintain a good balance between the exploration and the exploitation. Experimental studies on 106 groups of 1 060 instances show that FBPSO is able to identify near optimal solutions in a short running time. The average deviation between the solutions obtained by FBPSO and the best known solutions is 0.441%. Moreover, the average solution time of FBPSO is much less than that of other existing algorithms. In particular, with the increasing of instance size, the solution time of FBPSO grows much more slowly than that of other existing algorithms.
文摘Due to the size and complexity of power network and the cost of monitoring and telecommunication equipment, it is unfeasible to monitor the whole system variables. All system analyzers use voltages and currents of the network. Thus, monitoring scheme plays a main role in system analysis, control, and protection. To monitor the whole system using distributed measurements, strategic placement of them is needed. This paper improves a topological circuit observation method to minimize essential monitors. Besides the observability under normal condition of power networks, the observability of abnormal network is considered. Consequently, a high level of system reliability is carried out. In terms of reliability constraint, identification of bad measurement data in a given measurement system by making theme sure to be detectable is well done. Furthermore, it is maintained by a certain level of reliability against the single-line outages. Thus, observability is satisfied if all possible single line outages are plausible. Consideration of these limitations clears the role of utilizing an optimization algorithm. Hence, particle swarm optimization (PSO) is used to minimize monitoring cost and removing unobser-vable states under abnormal condition, simultaneously. The algorithm is tested in IEEE 14 and 30-bus test systems and Iranian (Mazandaran) Regional Electric Company.
文摘This paper presents an optimal proposed allocating procedure for hybrid wind energy combined with proton exchange membrane fuel cell (WE/PEMFC) system to improve the operation performance of the electrical distribution system (EDS). Egypt has an excellent wind regime with wind speeds of about 10 m/s at many areas. The disadvantage of wind energy is its seasonal variations. So, if wind power is to supply a significant portion of the demand, either backup power or electrical energy storage (EES) system is needed to ensure that loads will be supplied in reliable way. So, the hybrid WE/PEMFC system is designed to completely supply a part of the Egyptian distribution system, in attempt to isolate it from the grid. However, the optimal allocation of the hybrid units is obtained, in order to enhance their benefits in the distribution networks. The critical buses that are necessary to install the hybrid WE/ PEMFC system, are chosen using sensitivity analysis. Then, the binary Crow search algorithm (BCSA), discrete Jaya algorithm (DJA) and binary particle swarm optimization (BPSO) techniques are proposed to determine the optimal operation of power systems using single and multi-objective functions (SOF/MOF). Then, the results of the three optimization techniques are compared with each other. Three sensitivity factors are employed in this paper, which are voltage sensitivity factor (VSF), active losses sensitivity factor (ALSF) and reactive losses sensitivity factor (RLSF). The effects of the sensitivity factors (SFs) on the SOF/MOF are studied. The improvement of voltage profile and minimizing active and reactive power losses of the EDS are considered as objective functions. Backward/forward sweep (BFS) method is used for the load flow calculations. The system load demand is predicted up to year 2022 for Mersi-Matrouh City as a part of Egyptian distribution network, and the design of the hybrid WE/PEMFC system is applied. The PEMFC system is designed considering simplified mathematical expressions. The economics of operation of both WE and PEMFC system are also presented. The results prove the capability of the proposed procedure to find the optimal allocation for the hybrid WE/PEMFC system to improve the system voltage profile and to minimize both active and reactive power losses for the EDS of Mersi-Matrough City.
基金Supported by the National Natural Science Foundation of China (No.60873143)the National Key Subject Foundation for Basic Psychology (No.NKSF07003)
文摘Recently,as recognizing emotion has been one of the hallmarks of affective computing,more attention has been paid to physiological signals for emotion recognition.This paper presented an approach to emotion recognition using ElectroCardioGraphy(ECG) signals from multiple subjects.To collect reliable affective ECG data,we applied an arousal method by movie clips to make subjects experience specific emotions without external interference.Through precise location of P-QRS-T wave by continuous wavelet transform,an amount of ECG features was extracted sufficiently.Since feature selection is a combination optimization problem,Improved Binary Particle Swarm Optimization(IBPSO) based on neighborhood search was applied to search out effective features to improve classification results of emotion states with the help of fisher or K-Nearest Neighbor(KNN) classifier.In the experiment,it is shown that the approach is successful and the effective features got from ECG signals can express emotion states excellently.
基金supported by the Science and Technology Project of State Grid Shandong Electric Power Company?“Research on the Data-Driven Method for Energy Internet”?(Project No.2018A-100)。
文摘In order to promote the development of the Internet of Things(IoT),there has been an increase in the coverage of the customer electric information acquisition system(CEIAS).The traditional fault location method for the distribution network only considers the information reported by the Feeder Terminal Unit(FTU)and the fault tolerance rate is low when the information is omitted or misreported.Therefore,this study considers the influence of the distributed generations(DGs)for the distribution network.This takes the CEIAS as a redundant information source and solves the model by applying a binary particle swarm optimization algorithm(BPSO).The improved Dempster/S-hafer evidence theory(D-S evidence theory)is used for evidence fusion to achieve the fault section location for the distribution network.An example is provided to verify that the proposed method can achieve single or multiple fault locations with a higher fault tolerance.
基金supported by the National Key R&D Program of China (No.2019YFE0123600)National Natural Science Foundation of China (No.52077146)Young Elite Scientists Sponsorship Program by CSEE (No.CESS-YESS-2019027)。
文摘The increasing integration of photovoltaic generators(PVGs) and the uneven economic development in different regions may cause the unbalanced spatial-temporal distribution of load demands in an urban distribution network(UDN). This may lead to undesired consequences, including PVG curtailment, load shedding, and equipment inefficiency, etc. Global dynamic reconfiguration provides a promising method to solve those challenges. However, the power flow transfer capabilities for different kinds of switches are diverse, and the willingness of distribution system operators(DSOs) to select them is also different. In this paper, we formulate a multi-objective dynamic reconfiguration optimization model suitable for multi-level switching modes to minimize the operation cost, load imbalance, and the PVG curtailment. The multi-level switching includes feeder-level switching, transformer-level switching, and substation-level switching. A novel load balancing index is devised to quantify the global load balancing degree at different levels. Then, a stochastic programming model based on selected scenarios is established to address the uncertainties of PVGs and loads. Afterward, the fuzzy c-means(FCMs) clustering is applied to divide the time periods of reconfiguration. Furthermore, the modified binary particle swarm optimization(BPSO)and Cplex solver are combined to solve the proposed mixed-integer second-order cone programming(MISOCP) model. Numerical results based on the 148-node and 297-node systems are obtained to validate the effectiveness of the proposed method.