期刊文献+
共找到348篇文章
< 1 2 18 >
每页显示 20 50 100
Coordinated Controller Tuning of a Boiler Turbine Unit with New Binary Particle Swarm Optimization Algorithm 被引量:1
1
作者 Muhammad Ilyas Menhas Ling Wang +1 位作者 Min-Rui Fei Cheng-Xi Ma 《International Journal of Automation and computing》 EI 2011年第2期185-192,共8页
Coordinated controller tuning of the boiler turbine unit is a challenging task due to the nonlinear and coupling characteristics of the system.In this paper,a new variant of binary particle swarm optimization (PSO) ... Coordinated controller tuning of the boiler turbine unit is a challenging task due to the nonlinear and coupling characteristics of the system.In this paper,a new variant of binary particle swarm optimization (PSO) algorithm,called probability based binary PSO (PBPSO),is presented to tune the parameters of a coordinated controller.The simulation results show that PBPSO can effectively optimize the control parameters and achieves better control performance than those based on standard discrete binary PSO,modified binary PSO,and standard continuous PSO. 展开更多
关键词 Coordinated control boiler turbine unit particle swarm optimization (PSO) probability based binary particle swarm optimization (Pbpso) controller tuning.
下载PDF
SECURE STEGANOGRAPHY BASED ON BINARY PARTICLE SWARM OPTIMIZATION 被引量:2
2
作者 Guo Yanqing Kong Xiangwei You Xingang 《Journal of Electronics(China)》 2009年第2期285-288,共4页
The objective of steganography is to hide message securely in cover objects for secret communication.How to design a secure steganographic algorithm is still major challenge in this re-search field.In this letter,deve... The objective of steganography is to hide message securely in cover objects for secret communication.How to design a secure steganographic algorithm is still major challenge in this re-search field.In this letter,developing secure steganography is formulated as solving a constrained IP(Integer Programming) problem,which takes the relative entropy of cover and stego distributions as the objective function.Furthermore,a novel method is introduced based on BPSO(Binary Particle Swarm Optimization) for achieving the optimal solution of this programming problem.Experimental results show that the proposed method can achieve excellent performance on preserving neighboring co-occurrence features for JPEG steganography. 展开更多
关键词 Secure steganography Integer Programming(IP) binary particle swarm optimization(bpso
下载PDF
Optimal design of structures for earthquake loads by a hybrid RBF-BPSO method 被引量:2
3
作者 Eysa Salajegheh Saeed Gholizadeh Mohsen Khatibinia 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第1期13-24,共12页
The optimal seismic design of structures requires that time history analyses (THA) be carried out repeatedly. This makes the optimal design process inefficient, in particular, if an evolutionary algorithm is used. T... The optimal seismic design of structures requires that time history analyses (THA) be carried out repeatedly. This makes the optimal design process inefficient, in particular, if an evolutionary algorithm is used. To reduce the overall time required for structural optimization, two artificial intelligence strategies are employed. In the first strategy, radial basis function (RBF) neural networks are used to predict the time history responses of structures in the optimization flow. In the second strategy, a binary particle swarm optimization (BPSO) is used to find the optimum design. Combining the RBF and BPSO, a hybrid RBF-BPSO optimization method is proposed in this paper, which achieves fast optimization with high computational performance. Two examples are presented and compared to determine the optimal weight of structures under earthquake loadings using both exact and approximate analyses. The numerical results demonstrate the computational advantages and effectiveness of the proposed hybrid RBF-BPSO optimization method for the seismic design of structures. 展开更多
关键词 EARTHQUAKE optimization binary particle swarm neural networks radial basis function
下载PDF
A Binary Particle Swarm Optimization for the Minimum Weight Dominating Set Problem
4
作者 Geng Lin Jian Guan 《Journal of Computer Science & Technology》 SCIE EI CSCD 2018年第2期305-322,共18页
The minimum weight dominating set problem (MWDSP) is an NP-hard problem with a lot of real-world applications. Several heuristic algorithms have been presented to produce good quality solutions. However, the solutio... The minimum weight dominating set problem (MWDSP) is an NP-hard problem with a lot of real-world applications. Several heuristic algorithms have been presented to produce good quality solutions. However, the solution time of them grows very quickly as the size of the instance increases. In this paper, we propose a binary particle swarm optimization (FBPSO) for solving the MWDSP approximately. Based on the characteristic of MWDSP, this approach designs a new position updating rule to guide the search to a promising area. An iterated greedy tabu search is used to enhance the solution quality quickly. In addition, several stochastic strategies are employed to diversify the search and prevent premature convergence. These methods maintain a good balance between the exploration and the exploitation. Experimental studies on 106 groups of 1 060 instances show that FBPSO is able to identify near optimal solutions in a short running time. The average deviation between the solutions obtained by FBPSO and the best known solutions is 0.441%. Moreover, the average solution time of FBPSO is much less than that of other existing algorithms. In particular, with the increasing of instance size, the solution time of FBPSO grows much more slowly than that of other existing algorithms. 展开更多
关键词 metaheuristics binary particle swarm optimization tabu search dominating set problem combinatorial optimization
原文传递
Binary Particle Swarm Optimization Based Hyper-Heuristic for Solving the Set-Union Knapsack Problem
5
作者 CHEN Xiang LUO Jinyan LIN Geng 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2021年第4期305-314,共10页
The set-union knapsack problem(SUKP)is proved to be a strongly NP-hard problem,and it is an extension of the classic NP-hard problem:the 0-1 knapsack problem(KP).Solving the SUKP through exact approaches is computatio... The set-union knapsack problem(SUKP)is proved to be a strongly NP-hard problem,and it is an extension of the classic NP-hard problem:the 0-1 knapsack problem(KP).Solving the SUKP through exact approaches is computationally expensive.Therefore,several swarm intelligent algorithms have been proposed in order to solve the SUKP.Hyper-heuristics have received notable attention by researchers in recent years,and they are successfully applied to solve the combinatorial optimization problems.In this article,we propose a binary particle swarm optimization(BPSO)based hyper-heuristic for solving the SUKP,in which the BPSO is employed as a search methodology.The proposed approach has been evaluated on three sets of SUKP instances.The results are compared with 6 approaches:BABC,EMS,gPSO,DHJaya,b WSA,and HBPSO/TS,and demonstrate that the proposed approach for the SUKP outperforms other approaches. 展开更多
关键词 set-union knapsack problem binary programming HYPER-HEURISTICS particle swarm optimization
原文传递
Binary Gravitational Search based Algorithm for Optimum Siting and Sizing of DG and Shunt Capacitors in Radial Distribution Systems
6
作者 N. A. Khan S. Ghosh S. P. Ghoshal 《Energy and Power Engineering》 2013年第4期1005-1010,共6页
This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a no... This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a nonlinear constrained single-objective optimization problem where the total line loss (TLL) and the total voltage deviations (TVD) are to be minimized separately by incorporating optimal placement of DG units and shunt capacitors with constraints which include limits on voltage, sizes of installed capacitors and DG. This BGSA is applied on the balanced IEEE 10 Bus distribution network and the results are compared with conventional binary particle swarm optimization. 展开更多
关键词 Normal Load Flow Radial Distribution System Distributed Generation SHUNT Capacitors binary particle swarm optimization binary GRAVITATIONAL SEARCH Algorithm TOTAL line Loss TOTAL Voltage Deviation
下载PDF
Multi-objective allocation of measuring binary particle swarm optimization
7
作者 Khalil Gorgani FIROUZJAH Abdolreza SHEIKHOLESLAMI Taghi BARFOROUSHI 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2012年第4期399-415,共17页
Due to the size and complexity of power network and the cost of monitoring and telecommunication equipment, it is unfeasible to monitor the whole system variables. All system analyzers use voltages and currents of the... Due to the size and complexity of power network and the cost of monitoring and telecommunication equipment, it is unfeasible to monitor the whole system variables. All system analyzers use voltages and currents of the network. Thus, monitoring scheme plays a main role in system analysis, control, and protection. To monitor the whole system using distributed measurements, strategic placement of them is needed. This paper improves a topological circuit observation method to minimize essential monitors. Besides the observability under normal condition of power networks, the observability of abnormal network is considered. Consequently, a high level of system reliability is carried out. In terms of reliability constraint, identification of bad measurement data in a given measurement system by making theme sure to be detectable is well done. Furthermore, it is maintained by a certain level of reliability against the single-line outages. Thus, observability is satisfied if all possible single line outages are plausible. Consideration of these limitations clears the role of utilizing an optimization algorithm. Hence, particle swarm optimization (PSO) is used to minimize monitoring cost and removing unobser-vable states under abnormal condition, simultaneously. The algorithm is tested in IEEE 14 and 30-bus test systems and Iranian (Mazandaran) Regional Electric Company. 展开更多
关键词 optimal allocation phasor measurement units observability binary particle swarm optimization
原文传递
Optimal Allocation of a Hybrid Wind Energy-Fuel Cell System Using Different Optimization Techniques in the Egyptian Distribution Network
8
作者 Adel A. Abou El-Ela Sohir M. Allam Nermine K. Shehata 《Energy and Power Engineering》 2021年第1期17-40,共24页
This paper presents an optimal proposed allocating procedure for hybrid wind energy combined with proton exchange membrane fuel cell (WE/PEMFC) system to improve the operation performance of the electrical distributio... This paper presents an optimal proposed allocating procedure for hybrid wind energy combined with proton exchange membrane fuel cell (WE/PEMFC) system to improve the operation performance of the electrical distribution system (EDS). Egypt has an excellent wind regime with wind speeds of about 10 m/s at many areas. The disadvantage of wind energy is its seasonal variations. So, if wind power is to supply a significant portion of the demand, either backup power or electrical energy storage (EES) system is needed to ensure that loads will be supplied in reliable way. So, the hybrid WE/PEMFC system is designed to completely supply a part of the Egyptian distribution system, in attempt to isolate it from the grid. However, the optimal allocation of the hybrid units is obtained, in order to enhance their benefits in the distribution networks. The critical buses that are necessary to install the hybrid WE/ PEMFC system, are chosen using sensitivity analysis. Then, the binary Crow search algorithm (BCSA), discrete Jaya algorithm (DJA) and binary particle swarm optimization (BPSO) techniques are proposed to determine the optimal operation of power systems using single and multi-objective functions (SOF/MOF). Then, the results of the three optimization techniques are compared with each other. Three sensitivity factors are employed in this paper, which are voltage sensitivity factor (VSF), active losses sensitivity factor (ALSF) and reactive losses sensitivity factor (RLSF). The effects of the sensitivity factors (SFs) on the SOF/MOF are studied. The improvement of voltage profile and minimizing active and reactive power losses of the EDS are considered as objective functions. Backward/forward sweep (BFS) method is used for the load flow calculations. The system load demand is predicted up to year 2022 for Mersi-Matrouh City as a part of Egyptian distribution network, and the design of the hybrid WE/PEMFC system is applied. The PEMFC system is designed considering simplified mathematical expressions. The economics of operation of both WE and PEMFC system are also presented. The results prove the capability of the proposed procedure to find the optimal allocation for the hybrid WE/PEMFC system to improve the system voltage profile and to minimize both active and reactive power losses for the EDS of Mersi-Matrough City. 展开更多
关键词 Wind Energy System Proton Exchange Membrane Fuel Cell binary Crow Search Algorithm Discrete Jaya Algorithm binary particle swarm optimization Technique
下载PDF
基于GA-BPSO算法的MEC卸载决策
9
作者 王泽 郭荣佐 《计算机工程与设计》 北大核心 2023年第7期2054-2061,共8页
针对移动智能设备(SMD)的算力、内存和能量等无法满足计算密集型需求的问题,提出一种应用任务卸载到高性能边缘服务器的计算卸载。根据任务计算、传输等情况下的能耗和时延,构建出卸载决策系统模型;根据SMD和边缘服务器的计算能力等情况... 针对移动智能设备(SMD)的算力、内存和能量等无法满足计算密集型需求的问题,提出一种应用任务卸载到高性能边缘服务器的计算卸载。根据任务计算、传输等情况下的能耗和时延,构建出卸载决策系统模型;根据SMD和边缘服务器的计算能力等情况,降低SMD能耗为目标,将任务卸载决策问题描述为一个非线性约束优化问题;为对约束优化问题求解提出GA-BPSO算法,算法中将静态学习因子改为动态学习因子,将最优个体引入交叉操作中,扩大算法在解空间中的探索能力。通过实验验证GA-BPSO算法能在较短时间内收敛,实现了SMD较低的能量消耗。 展开更多
关键词 移动边缘计算 计算卸载 卸载决策 移动智能设备 遗传算法 二进制粒子群算法 GA-bpso算法
下载PDF
降低FBMC-OQAM系统中PAPR的GA-IBPSO算法
10
作者 朱海云 马天鸣 +1 位作者 江潇潇 王春媛 《小型微型计算机系统》 CSCD 北大核心 2023年第5期1069-1074,共6页
针对目前采用偏移正交幅度调制方式下的滤波器组多载波(Filter Bank Multi-Carrier Offset Quadrature Amplitude Modulation, FBMC-OQAM)技术具有峰均比(Peak-to-Average Power Ratio, PAPR)较高的缺点,设计了一种改进的离散二进制粒... 针对目前采用偏移正交幅度调制方式下的滤波器组多载波(Filter Bank Multi-Carrier Offset Quadrature Amplitude Modulation, FBMC-OQAM)技术具有峰均比(Peak-to-Average Power Ratio, PAPR)较高的缺点,设计了一种改进的离散二进制粒子群优化的遗传算法(Genetic Algorithm-Improved Binary Particle Swarm Optimization, GA-IBPSO).它选用带外衰减性能更好的原型滤波器代替原有的PHYDAYS来提高抑制效果,同时采用双层部分传输序列(Bilayer Partial Transfer Sequence, BPTS)的思想将临时存储的单层相位因子搜索结构转换成双层结构以扩大搜索范围,并融入遗传算法(Genetic Algorithm, GA)中的交叉、变异操作来进一步降低所得到的次优相位因子序列的计算复杂度.通过理论分析和仿真实验发现,相对于BPSO算法,GA-IBPSO算法通过计算量的略微增加获得了更好的PAPR抑制性能. 展开更多
关键词 滤波器组多载波 偏移正交调幅调制 峰均比 部分传输序列 粒子群优化算法
下载PDF
基于改进二进制粒子群算法优化DBN的轴承故障诊断 被引量:1
11
作者 陈剑 黄志 +2 位作者 徐庭亮 孙太华 李雪原 《组合机床与自动化加工技术》 北大核心 2024年第1期168-173,共6页
针对滚动轴承故障振动信号非平稳性的特点,对二进制粒子群优化算法(binary particles swarm optimization,BPSO)和深度信念网络(deep belief network,DBN)进行研究,提出一种基于局部均值分解(local mean decomposition,LMD)和IBPSO-DBN... 针对滚动轴承故障振动信号非平稳性的特点,对二进制粒子群优化算法(binary particles swarm optimization,BPSO)和深度信念网络(deep belief network,DBN)进行研究,提出一种基于局部均值分解(local mean decomposition,LMD)和IBPSO-DBN的轴承故障诊断方法。提出用加权惯性权重改进BPSO迭代过程中的固定权重,再用改进BPSO优化DBN的隐含层神经元个数和学习率。该方法先对信号进行LMD,提取出各PF分量的散布熵和时域指标,并构建特征矩阵,然后把特征矩阵输入改进BPSO-DBN模型中训练,实现滚动轴承故障诊断和分类。采用试验轴承数据做验证并与其他诊断方法对比,结果表明,基于LMD和BPSO-DBN的滚动轴承故障诊断方法具有较好的故障识别率。 展开更多
关键词 局部均值分解 二进制粒子群优化算法 深度置信网络 滚动轴承故障诊断
下载PDF
高光谱结合离散二进制粒子群算法对久保桃可溶性固形物含量的检测
12
作者 张立秀 张淑娟 +3 位作者 孙海霞 薛建新 景建平 崔添俞 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期656-662,共7页
可溶性固形物(SSC)是评价久保桃内部品质的重要指标。传统的SSC检测有损、费时、费力;快速、无损检测久保桃的SSC含量对于其品质分级有着重要意义。离散二进制粒子群算法(BPSO)是在标准粒子群算法(PSO)的基础上,更新速度公式得到的,具... 可溶性固形物(SSC)是评价久保桃内部品质的重要指标。传统的SSC检测有损、费时、费力;快速、无损检测久保桃的SSC含量对于其品质分级有着重要意义。离散二进制粒子群算法(BPSO)是在标准粒子群算法(PSO)的基础上,更新速度公式得到的,具有精度高,收敛快的特点,多用于离散空间的优化问题。基于高光谱技术结合BPSO算法及BPSO的组合特征波长选择算法对久保桃的SSC含量预测进行研究。首先采集198个久保桃样本的高光谱信息,获取久保桃900~1700nm范围内的光谱信息,计算感兴趣区域的平均光谱作为有效光谱数据,同时测量久保桃的SSC值。采用K-S(Kennard-Stone)算法将样本划分为校正集(147个)和预测集(51个)。使用BPSO特征波长选择算法对久保桃的原始光谱数据进行特征波长提取,并与竞争性自适应重加权算法(CARS)、连续投影法(SPA)、无信息变量选择法(UVE)等特征波长选择算法比较。同时为了避免单一算法建模中的不稳定问题,提出了基于BPSO的一次组合(BPS0+CARS、BPSO+SPA、BPSO+UVE)和二次组合[(BPSO+CARS)-SPA]、[(BPSO+SPA)-SPA]、[(BPSO+UVE)-SPA]特征波长提取方法。基于上述10种特征波长提取方法分别建立支持向量机(LS-SVM)模型和遗传算法(GA)优化的支持向量机模型(GA-SVM)模型。结果表明,基于BPSO算法提取特征波长建立的模型预测性能均高于其他单一特征波长方法,建立的两种模型预测集决定系数R_(p)^(2)均达到0.97以上;基于BPSO的组合算法中,二次组合(BPSO+SPA)-SPA算法建立的LS-SVM在特征波长数量较少的情况下对久保桃SSC含量预测性能最高,校正集和预测集决定系数R_(c)^(2)为0.982,R_(p)^(2)为0.955,均方根误差RMSEC为0.108,RMSEP为0.139。该模型预测性能略低于BPSO算法,但其仅用了22个特征波长进行建模,极大地简化了模型。说明(BPSO+SPA)-SPA是一种有效的特征波长提取方法,为水果SSC含量的无损检测提供了新的检测方法。 展开更多
关键词 高光谱 离散二进制算法 特征光谱变量 久保桃 可溶性固形物
下载PDF
基于BPSO-SVM的网络入侵特征选择和检测 被引量:20
13
作者 高海华 杨辉华 王行愚 《计算机工程》 EI CAS CSCD 北大核心 2006年第8期37-39,共3页
采用改进的二进制粒子群优化进行入侵特征子集选择,粒子群中每个粒子代表一个选择的特征子集,结合支持向量机使用该特征子集所对应的数据集进行分类,正确分类结果作为该粒子的适应度,通过粒子群优化实现最优入侵特征选择。改进的BPSO方... 采用改进的二进制粒子群优化进行入侵特征子集选择,粒子群中每个粒子代表一个选择的特征子集,结合支持向量机使用该特征子集所对应的数据集进行分类,正确分类结果作为该粒子的适应度,通过粒子群优化实现最优入侵特征选择。改进的BPSO方法中通过引入粒子群依概率整体变异来避免陷入局部最优,同时采用粒子禁忌搜索列表来扩大粒子搜索范围和避免重复计算;SVM中采用基于粒度的网格搜索来获得最优核参数。最后用KDD 99标准数据集进行实验研究,结果表明该方法能获得满意的检测效果。 展开更多
关键词 二进制粒子群优化 支持向量机 异常检测 特征选择
下载PDF
基于BPSO的web服务推荐策略 被引量:5
14
作者 蔡华利 刘鲁 +1 位作者 樊坤 王理 《深圳大学学报(理工版)》 EI CAS 北大核心 2010年第1期49-55,共7页
为解决web服务的优化选择,提出一种基于离散二进制粒子群算法(binary particle swarm optimization,BPSO)的web服务推荐策略.用数学方法阐述基于服务质量(quality of service,QoS)的业务组合,将业务单元组合转换到服务组合,给出不同服... 为解决web服务的优化选择,提出一种基于离散二进制粒子群算法(binary particle swarm optimization,BPSO)的web服务推荐策略.用数学方法阐述基于服务质量(quality of service,QoS)的业务组合,将业务单元组合转换到服务组合,给出不同服务组合模式下的QoS属性值计算公式,提出web服务集和嵌套概念,对具有嵌套模式的服务组合进行逐一遍历.将基于QoS的web服务组合优化问题看成是多目标优化决策问题,提出基于BPSO的web服务组合优化数学模型,利用目标加权法简化多目标决策问题.对BPSO进行改进,构建了基于BPSO的web服务推荐仿真系统,仿真表明,该方法高效可行. 展开更多
关键词 计算机应用 离散二进制粒子群优化 WEB服务 QOS属性 多目标优化
下载PDF
基于BPSO的棉花异性纤维目标特征快速选择方法 被引量:5
15
作者 王金星 李恒斌 +3 位作者 王蕊 刘双喜 曹维时 闫银发 《农业机械学报》 EI CAS CSCD 北大核心 2013年第2期188-191,共4页
针对现有棉花异性纤维目标特征选择方法迭代次数多、速度慢等问题,提出了一种基于改进粒子群优化算法的棉花异性纤维目标特征快速选择方法。使用离散型粒子群优化算法作为特征选择算法,利用支持向量机算法作为分类器对最优特征集进行验... 针对现有棉花异性纤维目标特征选择方法迭代次数多、速度慢等问题,提出了一种基于改进粒子群优化算法的棉花异性纤维目标特征快速选择方法。使用离散型粒子群优化算法作为特征选择算法,利用支持向量机算法作为分类器对最优特征集进行验证。实验结果表明,在分类准确率与蚁群算法相当的情况下,能减少26%的运行时间。 展开更多
关键词 棉花 异性纤维 支持向量机 离散型粒子群优化算法 特征选择
下载PDF
基于BPSO的四种生理信号的情感状态识别 被引量:8
16
作者 杨瑞请 刘光远 《计算机科学》 CSCD 北大核心 2008年第3期137-138,154,共3页
通过生理信号来识别人的情感状态越来越引起人们的关注。如何提取有效的生理信号特征进行情感状态的分类,是情感识别的关键。本文采用离散二进制粒子群优化算法(BPSO)进行特征选择,以提高情感状态分类的效果。通过四种生理信号来识别四... 通过生理信号来识别人的情感状态越来越引起人们的关注。如何提取有效的生理信号特征进行情感状态的分类,是情感识别的关键。本文采用离散二进制粒子群优化算法(BPSO)进行特征选择,以提高情感状态分类的效果。通过四种生理信号来识别四种情感状态,用最近邻法进行分类,总体识别率达到85%。仿真实验结果表明,将BPSO方法用于生理信号的特征选择是可行的。 展开更多
关键词 生理信号 二进制粒子群算法 特征选择 情感识别
下载PDF
基于BPSOGA的含风电机组的配电线路故障区段定位 被引量:31
17
作者 金涛 李鸿南 刘对 《电力自动化设备》 EI CSCD 北大核心 2016年第6期27-33,共7页
风电机组等分布式电源并入配电线路中,将导致传统的故障区段定位方法不再适用。对传统的开关函数和适应度函数进行改进,统一假定开关的正方向,提出基于粒子群优化算法和遗传算法的二进制混合算法。该算法采用双种群进化和信息交换的策略... 风电机组等分布式电源并入配电线路中,将导致传统的故障区段定位方法不再适用。对传统的开关函数和适应度函数进行改进,统一假定开关的正方向,提出基于粒子群优化算法和遗传算法的二进制混合算法。该算法采用双种群进化和信息交换的策略,在寻优搜索开始时产生2个子种群,双种群在进化过程中互不干扰,在每一代进化完成后相互共享信息,选择最优信息进行2个种群下一代的进化,直至得出最优解。仿真结果表明:所提方法对风电机组的并网数量和位置不作限制,适用于单一故障和多重故障的定位,并且具有一定的容错性。与单独的二进制粒子群优化算法和遗传算法对比,所提混合算法性能较高、收敛速度较快,能明显降低出现'未成熟收敛'的概率。 展开更多
关键词 粒子群优化算法 遗传算法 二进制混合算法 风电机组 配电线路 故障区段定位
下载PDF
基于RF-GABPSO混合选择算法的黑土有机质含量估测研究 被引量:6
18
作者 马玥 姜琦刚 +1 位作者 孟治国 刘骅欣 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第1期181-187,共7页
针对土壤有机质含量高光谱估测研究中变量维数过高与特征谱段筛选问题,提出了一种结合随机森林和自适应搜索算法的混合特征选择方法。首先依据随机森林变量重要性原理获取初始优化集,然后利用遗传二进制粒子群封装算法对初始优化集进一... 针对土壤有机质含量高光谱估测研究中变量维数过高与特征谱段筛选问题,提出了一种结合随机森林和自适应搜索算法的混合特征选择方法。首先依据随机森林变量重要性原理获取初始优化集,然后利用遗传二进制粒子群封装算法对初始优化集进一步自适应筛选。对于土壤有机质含量估测建模问题,选择稳健性强且能有效处理高维变量的随机森林算法。以典型黑土区采集的土壤样品为研究对象,将ASD光谱仪获取的可见光-近红外区间光谱数据和经化学分析得到的土壤有机质含量为数据源,对原始光谱进行光谱变换和重采样处理后,采用随机森林-遗传二进制粒子群混合选择方法提取特征光谱区间,构建有机质含量随机森林估测模型。与利用全光谱、随机森林方法筛选的光谱和自适应搜索算法筛选的光谱构建随机森林模型得到的预测精度进行比较。结果表明,利用随机森林-遗传二进制粒子群混合特征选择算法筛选的波谱变量参与随机森林建模,预测决定系数,均方根误差和相对分析误差分别为0.838,0.54%,2.534。该方案应用最少的变量个数获得最高的预测精度,能够较高效地估测黑土有机质含量,也能为其他类型土壤在有机质含量估测研究的变量筛选与建模问题上提供参考。 展开更多
关键词 高光谱 黑土有机质含量 遗传算法 二进制粒子群算法 随机森林
下载PDF
基于GA-PSO混合优化SVM的机载EHA故障诊断
19
作者 覃刚 葛益波 +1 位作者 姚叶明 周清和 《液压与气动》 北大核心 2024年第5期168-180,共13页
针对机载电静液作动器(Electro-Hydrostatic Actuator,EHA)的典型故障,详细分析了故障原理并在MATLAB/Simulink中搭建了仿真模型。为了高效准确识别故障类型,提出一种用遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Opti... 针对机载电静液作动器(Electro-Hydrostatic Actuator,EHA)的典型故障,详细分析了故障原理并在MATLAB/Simulink中搭建了仿真模型。为了高效准确识别故障类型,提出一种用遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Optimization,PSO)混合优化支持向量机(Support Vector Machine,SVM)的故障诊断算法。GA鲁棒性好且全局搜索能力强但收敛速度慢,PSO对样本规模不敏感且具有记忆功能但易陷入局部最优,故融合两种算法寻找SVM的最优参数。另外,为了解决传统SVM多分类方法“一对多”和“一对一”易出现不可分的问题,建立一种偏二叉树结构的SVM多分类模型。对于采集的原始数据高度重合的情况,引入时域特征统计量进一步提升模型的分类性能。实验结果表明,提出的混合优化算法寻优速度更快、所寻参数更佳,同时用该算法优化的SVM分类模型相比于其他5类常用的机器学习模型分类效果更好,故障识别正确率可达97.7%。 展开更多
关键词 机载EHA 遗传算法 粒子群算法 偏二叉树结构 多分类SVM
下载PDF
BPSO优化朴素贝叶斯分类器的降水分级预报试验 被引量:3
20
作者 张群 席岩 +2 位作者 胡邦辉 王学忠 张惠君 《解放军理工大学学报(自然科学版)》 北大核心 2014年第4期386-392,共7页
为进一步研究朴素贝叶斯分类器在单站降水预报方面的应用效果,利用2008年至2011年6~9月份的T511数值预报产品和单站观测资料,采用2种不同适应度函数的二进制粒子群算法(简称BPSO)优化朴素贝叶斯分类器算法( BPSO-NB),对石家庄、太... 为进一步研究朴素贝叶斯分类器在单站降水预报方面的应用效果,利用2008年至2011年6~9月份的T511数值预报产品和单站观测资料,采用2种不同适应度函数的二进制粒子群算法(简称BPSO)优化朴素贝叶斯分类器算法( BPSO-NB),对石家庄、太原、林西3站13~24 h时段的晴雨和降水等级进行了预报试验。试报结果表明:BPSO-NB、BPSO-NB2模型3站平均晴雨预报准确率明显高于T511,均在85%以上,且BP-SO-NB2(87.1%)最优;2种模型小雨、中雨TS评分也高于T511,BPSO-NB1(0.403、0.167)最优。 BPSO-NB模型能有效降低T511空报次数。 展开更多
关键词 粒子群算法 二进制 朴素贝叶斯分类器 降水预报
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部