期刊文献+
共找到492篇文章
< 1 2 25 >
每页显示 20 50 100
Quantum-Inspired Particle Swarm Optimization Algorithm Encoded by Probability Amplitudes of Multi-Qubits
1
作者 Xin Li Huangfu Xu Xuezhong Guan 《Open Journal of Optimization》 2015年第2期21-30,共10页
To enhance the optimization ability of particle swarm algorithm, a novel quantum-inspired particle swarm optimization algorithm is proposed. In this method, the particles are encoded by the probability amplitudes of t... To enhance the optimization ability of particle swarm algorithm, a novel quantum-inspired particle swarm optimization algorithm is proposed. In this method, the particles are encoded by the probability amplitudes of the basic states of the multi-qubits system. The rotation angles of multi-qubits are determined based on the local optimum particle and the global optimal particle, and the multi-qubits rotation gates are employed to update the particles. At each of iteration, updating any qubit can lead to updating all probability amplitudes of the corresponding particle. The experimental results of some benchmark functions optimization show that, although its single step iteration consumes long time, the optimization ability of the proposed method is significantly higher than other similar algorithms. 展开更多
关键词 quantum Computing particle swarm optimization Multi-Qubits PROBABILITY AMPLITUDES Encoding algorithm Design
下载PDF
Optimal Planning of Charging Station for Electric Vehicle Based on Quantum PSO Algorithm 被引量:9
2
作者 LIU Zifa ZHANG Wei WANG Zeli 《中国电机工程学报》 EI CSCD 北大核心 2012年第22期I0006-I0006,共1页
关键词 电动汽车 粒子群算法 充电站 规划 优化 量子 能源 EV
下载PDF
Binary Gravitational Search based Algorithm for Optimum Siting and Sizing of DG and Shunt Capacitors in Radial Distribution Systems
3
作者 N. A. Khan S. Ghosh S. P. Ghoshal 《Energy and Power Engineering》 2013年第4期1005-1010,共6页
This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a no... This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a nonlinear constrained single-objective optimization problem where the total line loss (TLL) and the total voltage deviations (TVD) are to be minimized separately by incorporating optimal placement of DG units and shunt capacitors with constraints which include limits on voltage, sizes of installed capacitors and DG. This BGSA is applied on the balanced IEEE 10 Bus distribution network and the results are compared with conventional binary particle swarm optimization. 展开更多
关键词 Normal Load Flow Radial Distribution System Distributed Generation SHUNT Capacitors binary particle swarm optimization binary GRAVITATIONAL SEARCH algorithm TOTAL line Loss TOTAL Voltage Deviation
下载PDF
Quantum-inspired swarm evolution algorithm
4
作者 HUANG You-rui TANG Chao-li WANG Shuang 《通讯和计算机(中英文版)》 2008年第5期36-39,共4页
关键词 量子计算 颗粒集群优化 进化算法 计算机技术
下载PDF
A novel mapping algorithm for three-dimensional network on chip based on quantum-behaved particle swarm optimization 被引量:2
5
作者 Cui HUANG Dakun ZHANG Guozhi SONG 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第4期622-631,共10页
Mapping of three-dimensional network on chip is a key problem in the research of three-dimensional network on chip. The quality of the mapping algorithm used di- rectly affects the communication efficiency between IP ... Mapping of three-dimensional network on chip is a key problem in the research of three-dimensional network on chip. The quality of the mapping algorithm used di- rectly affects the communication efficiency between IP cores and plays an important role in the optimization of power consumption and throughput of the whole chip. In this paper, ba- sic concepts and related work of three-dimensional network on chip are introduced. Quantum-behaved particle swarm op- timization algorithm is applied to the mapping problem of three-dimensional network on chip for the first time. Sim- ulation results show that the mapping algorithm based on quantum-behaved particle swarm algorithm has faster con- vergence speed with much better optimization performance compared with the mapping algorithm based on particle swarm algorithm. It also can effectively reduce the power consumption of mapping of three-dimensional network on chip. 展开更多
关键词 three-dimensional network on chip mapping al-gorithm quantum-behaved particle swarm optimization al-gorithm particle swarm optimization algorithm low powerconsumption
原文传递
An Effective Non-Commutative Encryption Approach with Optimized Genetic Algorithm for Ensuring Data Protection in Cloud Computing 被引量:2
6
作者 S.Jerald Nirmal Kumar S.Ravimaran M.M.Gowthul Alam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期671-697,共27页
Nowadays,succeeding safe communication and protection-sensitive data from unauthorized access above public networks are the main worries in cloud servers.Hence,to secure both data and keys ensuring secured data storag... Nowadays,succeeding safe communication and protection-sensitive data from unauthorized access above public networks are the main worries in cloud servers.Hence,to secure both data and keys ensuring secured data storage and access,our proposed work designs a Novel Quantum Key Distribution(QKD)relying upon a non-commutative encryption framework.It makes use of a Novel Quantum Key Distribution approach,which guarantees high level secured data transmission.Along with this,a shared secret is generated using Diffie Hellman(DH)to certify secured key generation at reduced time complexity.Moreover,a non-commutative approach is used,which effectively allows the users to store and access the encrypted data into the cloud server.Also,to prevent data loss or corruption caused by the insiders in the cloud,Optimized Genetic Algorithm(OGA)is utilized,which effectively recovers the data and retrieve it if the missed data without loss.It is then followed with the decryption process as if requested by the user.Thus our proposed framework ensures authentication and paves way for secure data access,with enhanced performance and reduced complexities experienced with the prior works. 展开更多
关键词 Cloud computing quantum key distribution Diffie Hellman non-commutative approach genetic algorithm particle swarm optimization
下载PDF
Hybridization of Fuzzy and Hard Semi-Supervised Clustering Algorithms Tuned with Ant Lion Optimizer Applied to Higgs Boson Search 被引量:1
7
作者 Soukaina Mjahed Khadija Bouzaachane +2 位作者 Ahmad Taher Azar Salah El Hadaj Said Raghay 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期459-494,共36页
This paper focuses on the unsupervised detection of the Higgs boson particle using the most informative features and variables which characterize the“Higgs machine learning challenge 2014”data set.This unsupervised ... This paper focuses on the unsupervised detection of the Higgs boson particle using the most informative features and variables which characterize the“Higgs machine learning challenge 2014”data set.This unsupervised detection goes in this paper analysis through 4 steps:(1)selection of the most informative features from the considered data;(2)definition of the number of clusters based on the elbow criterion.The experimental results showed that the optimal number of clusters that group the considered data in an unsupervised manner corresponds to 2 clusters;(3)proposition of a new approach for hybridization of both hard and fuzzy clustering tuned with Ant Lion Optimization(ALO);(4)comparison with some existing metaheuristic optimizations such as Genetic Algorithm(GA)and Particle Swarm Optimization(PSO).By employing a multi-angle analysis based on the cluster validation indices,the confusion matrix,the efficiencies and purities rates,the average cost variation,the computational time and the Sammon mapping visualization,the results highlight the effectiveness of the improved Gustafson-Kessel algorithm optimized withALO(ALOGK)to validate the proposed approach.Even if the paper gives a complete clustering analysis,its novel contribution concerns only the Steps(1)and(3)considered above.The first contribution lies in the method used for Step(1)to select the most informative features and variables.We used the t-Statistic technique to rank them.Afterwards,a feature mapping is applied using Self-Organizing Map(SOM)to identify the level of correlation between them.Then,Particle Swarm Optimization(PSO),a metaheuristic optimization technique,is used to reduce the data set dimension.The second contribution of thiswork concern the third step,where each one of the clustering algorithms as K-means(KM),Global K-means(GlobalKM),Partitioning AroundMedoids(PAM),Fuzzy C-means(FCM),Gustafson-Kessel(GK)and Gath-Geva(GG)is optimized and tuned with ALO. 展开更多
关键词 Ant lion optimization binary clustering clustering algorithms Higgs boson feature extraction dimensionality reduction elbow criterion genetic algorithm particle swarm optimization
下载PDF
Optimal Allocation of a Hybrid Wind Energy-Fuel Cell System Using Different Optimization Techniques in the Egyptian Distribution Network
8
作者 Adel A. Abou El-Ela Sohir M. Allam Nermine K. Shehata 《Energy and Power Engineering》 2021年第1期17-40,共24页
This paper presents an optimal proposed allocating procedure for hybrid wind energy combined with proton exchange membrane fuel cell (WE/PEMFC) system to improve the operation performance of the electrical distributio... This paper presents an optimal proposed allocating procedure for hybrid wind energy combined with proton exchange membrane fuel cell (WE/PEMFC) system to improve the operation performance of the electrical distribution system (EDS). Egypt has an excellent wind regime with wind speeds of about 10 m/s at many areas. The disadvantage of wind energy is its seasonal variations. So, if wind power is to supply a significant portion of the demand, either backup power or electrical energy storage (EES) system is needed to ensure that loads will be supplied in reliable way. So, the hybrid WE/PEMFC system is designed to completely supply a part of the Egyptian distribution system, in attempt to isolate it from the grid. However, the optimal allocation of the hybrid units is obtained, in order to enhance their benefits in the distribution networks. The critical buses that are necessary to install the hybrid WE/ PEMFC system, are chosen using sensitivity analysis. Then, the binary Crow search algorithm (BCSA), discrete Jaya algorithm (DJA) and binary particle swarm optimization (BPSO) techniques are proposed to determine the optimal operation of power systems using single and multi-objective functions (SOF/MOF). Then, the results of the three optimization techniques are compared with each other. Three sensitivity factors are employed in this paper, which are voltage sensitivity factor (VSF), active losses sensitivity factor (ALSF) and reactive losses sensitivity factor (RLSF). The effects of the sensitivity factors (SFs) on the SOF/MOF are studied. The improvement of voltage profile and minimizing active and reactive power losses of the EDS are considered as objective functions. Backward/forward sweep (BFS) method is used for the load flow calculations. The system load demand is predicted up to year 2022 for Mersi-Matrouh City as a part of Egyptian distribution network, and the design of the hybrid WE/PEMFC system is applied. The PEMFC system is designed considering simplified mathematical expressions. The economics of operation of both WE and PEMFC system are also presented. The results prove the capability of the proposed procedure to find the optimal allocation for the hybrid WE/PEMFC system to improve the system voltage profile and to minimize both active and reactive power losses for the EDS of Mersi-Matrough City. 展开更多
关键词 Wind Energy System Proton Exchange Membrane Fuel Cell binary Crow Search algorithm Discrete Jaya algorithm binary particle swarm optimization Technique
下载PDF
Quantum control based on three forms of Lyapunov functions
9
作者 俞国慧 杨洪礼 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期216-222,共7页
This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.S... This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given. 展开更多
关键词 quantum system Lyapunov function particle swarm optimization simulated annealing algorithms quantum control
下载PDF
基于BQPSO的多故障最小候选集生成技术研究 被引量:2
10
作者 李宝晨 黄考利 +2 位作者 连光耀 吕晓明 张西山 《计算机测量与控制》 北大核心 2013年第6期1476-1479,1482,共5页
多故障最小候选集生成是多故障诊断策略的首要问题,研究了利用二进制量子粒子群优化算法(Binary Quantum ParticleSwarm Optimization,BQPSO)生成多故障模糊组最小候选集的方法;首先利用紧急表示法描述某或节点上的多故障模糊组,其最小... 多故障最小候选集生成是多故障诊断策略的首要问题,研究了利用二进制量子粒子群优化算法(Binary Quantum ParticleSwarm Optimization,BQPSO)生成多故障模糊组最小候选集的方法;首先利用紧急表示法描述某或节点上的多故障模糊组,其最小候选集即多故障模糊组的最小碰集;然后利用BQPSO算法求解多故障模糊组的最小碰集,通过进行二进制编码,并构造引导粒子搜索问题解的适应度函数,解决BQPSO算法求解最小碰集的适应性问题,并保证了算法尽可能搜索冲突集的全部碰集;最后通过某系统实例对算法的有效性进行了验证;结果表明,该算法具有全局搜索能力强、控制参数少、收敛性能好、运算简便等优势,能有效应用于多故障最小候选集问题的求解。 展开更多
关键词 多故障诊断 最小候选集 最小碰集 bqpso算法
下载PDF
基于BQPSO的电网多目标优化规划 被引量:1
11
作者 张明光 王世亮 《计算机工程与应用》 CSCD 北大核心 2015年第18期266-270,共5页
对于多目标电网优化规划问题,建立以经济性和可靠性为目标的电网规划模型,通过二进制编码的量子粒子群算法进行优化。为了提高最优解的多样性和分布性,采用拥挤距离排序的方法对外部存储器中的最优解进行更新和维护,使得算法找到尽可能... 对于多目标电网优化规划问题,建立以经济性和可靠性为目标的电网规划模型,通过二进制编码的量子粒子群算法进行优化。为了提高最优解的多样性和分布性,采用拥挤距离排序的方法对外部存储器中的最优解进行更新和维护,使得算法找到尽可能多的Pareto最优解。仿真结果显示,基于拥挤距离排序的二进制量子粒子群算法比其他智能算法寻得的最优解有更好的分布性和收敛性。 展开更多
关键词 多目标优化 量子粒子群算法 二进制编码 拥挤距离 PARETO最优解
下载PDF
基于BQPSO的无线传感器网络节点调度算法
12
作者 徐小玲 刘美 《科学技术与工程》 2011年第30期7428-7433,共6页
在多目标跟踪中,要求无线传感器网络在满足跟踪精度的前提下,最大限度地降低对传感器资源的使用。基于这一目的,适当选择节点避免共线度过高,并采用APIT实现精确定位,同时考虑跟踪簇总能耗设计节点调度目标函数,采用二进制量子粒子群优... 在多目标跟踪中,要求无线传感器网络在满足跟踪精度的前提下,最大限度地降低对传感器资源的使用。基于这一目的,适当选择节点避免共线度过高,并采用APIT实现精确定位,同时考虑跟踪簇总能耗设计节点调度目标函数,采用二进制量子粒子群优化算法解决传感器资源冲突问题。仿真结果表明:虽然基于BQPSO的节点调度算法比基于PSO的节点调度算法在能耗上增加了17.47%,但定位精度可以提高31.84%。算法在提高定位精度的同时最大限度地降低了对资源的使用,有效延长了无线传感器网络的工作寿命。 展开更多
关键词 无线传感器网络 节点调度 二进制量子粒子群优化
下载PDF
基于BQPSO的潜水器路径规划算法 被引量:1
13
作者 韩应贤 刘静 朱大奇 《计算机工程》 CAS CSCD 北大核心 2011年第8期216-218,共3页
在栅格法的自治水下机器人离散工作空间基础上,提出一种基于二进制编码的量子粒子群(BQPSO)算法求解自治水下机器人路径规划问题。该算法将路径表示为粒子位置的二进制编码,以路径长度为适应值,引入交叉策略避免陷入局部最小。仿真实验... 在栅格法的自治水下机器人离散工作空间基础上,提出一种基于二进制编码的量子粒子群(BQPSO)算法求解自治水下机器人路径规划问题。该算法将路径表示为粒子位置的二进制编码,以路径长度为适应值,引入交叉策略避免陷入局部最小。仿真实验表明,BQPSO算法可以进行有效的自治水下机器人路径避障。 展开更多
关键词 粒子群优化算法 量子粒子群优化算法 二进制量子粒子群优化算法 路径规划
下载PDF
基于IBQPSO的含DG配电网故障区段定位 被引量:1
14
作者 赵敏 田书 《电工电气》 2020年第5期12-16,23,共6页
为适应含分布式电源(DG)智能配网的建设和发展对其故障区段定位高效性和准确性的要求,构建了可自适应多DG投切的开关函数模型,并结合网络分区处理解决方案,提出一种基于改进二进制量子粒子群算法(IBQPSO)的含DG配电网故障区段定位方法,... 为适应含分布式电源(DG)智能配网的建设和发展对其故障区段定位高效性和准确性的要求,构建了可自适应多DG投切的开关函数模型,并结合网络分区处理解决方案,提出一种基于改进二进制量子粒子群算法(IBQPSO)的含DG配电网故障区段定位方法,有效克服了二进制粒子群算法(BPSO)固有的全局和局部搜索能力不平衡问题。通过含DG的IEEE33节点系统仿真分析,验证了该方法的容错性、快速性和准确性。 展开更多
关键词 含DG配电网 故障区段定位 开关函数 分区处理 改进二进制量子粒子群算法(Ibqpso)
下载PDF
Automatic Image Inspection of Fabric Defects Based on Optimal Gabor Filter
15
作者 尉苗苗 李岳阳 +1 位作者 蒋高明 丛洪莲 《Journal of Donghua University(English Edition)》 EI CAS 2016年第4期545-548,共4页
An effective method for automatic image inspection of fabric defects is presented. The proposed method relies on a tuned 2D-Gabor filter and quantum-behaved particle swarm optimization( QPSO) algorithm. The proposed m... An effective method for automatic image inspection of fabric defects is presented. The proposed method relies on a tuned 2D-Gabor filter and quantum-behaved particle swarm optimization( QPSO) algorithm. The proposed method consists of two main steps:( 1) training and( 2) image inspection. In the image training process,the parameters of the 2D-Gabor filters can be tuned by QPSO algorithm to match with the texture features of a defect-free template. In the inspection process, each sample image under inspection is convoluted with the selected optimized Gabor filter.Then a simple thresholding scheme is applied to generating a binary segmented result. The performance of the proposed scheme is evaluated by using a standard fabric defects database from Cotton Incorporated. Good experimental results demonstrate the efficiency of proposed method. To further evaluate the performance of the proposed method,a real time test is performed based on an on-line defect detection system. The real time test results further demonstrate the effectiveness, stability and robustness of the proposed method,which is suitable for industrial production. 展开更多
关键词 fabric defect detection optimal Gabor filter quantum-behaved particle swarm optimization(QPSO) algorithm image segmentation
下载PDF
钻孔瞬变电磁法扫描探测RCQPSO-LMO组合算法2.5D反演 被引量:4
16
作者 程久龙 焦俊俊 +1 位作者 陈志 董毅 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第2期781-792,共12页
利用钻孔进行超前探测地质构造及含水体是地下开挖工程中的常规手段,如何利用这些钻孔进行钻孔瞬变电磁法扫描探测,从而实现钻孔孔壁外围地质异常体的精细探测,对实现地下工程地质透明化具有重要的指导意义.本文提出钻孔瞬变电磁法扫描... 利用钻孔进行超前探测地质构造及含水体是地下开挖工程中的常规手段,如何利用这些钻孔进行钻孔瞬变电磁法扫描探测,从而实现钻孔孔壁外围地质异常体的精细探测,对实现地下工程地质透明化具有重要的指导意义.本文提出钻孔瞬变电磁法扫描探测2.5D反演的数据解译方法,首先针对随机性反演算法时效性低,易陷入局部最优解,而确定性反演算法依赖初始模型的问题,提出了组合策略的量子粒子群优化算法用来随机搜索最优初始模型.在此基础上,利用Levenberg-Marquarat方法求解Occam反演的目标函数,形成了RCQPSO-LMO组合算法进行2.5D反演,通过对比组合算法和单一算法,验证了组合算法具有更精确的反演结果.其次结合屏蔽条件下扫描探测,对比分析了有无屏蔽的2.5D反演结果,通过设定屏蔽系数对非探测方向信号进行部分压制,可以较好地解决钻孔径向扫描探测中对非探测方向信号部分屏蔽下的反演及成像.最后建立三组理论模型进行组合算法2.5D反演,结果表明:组合算法反演结果与理论模型的一致性较好,对低阻异常体的反演精度较高,验证了组合算法对钻孔孔壁外围低阻异常体具有较高的反演精度和分辨能力. 展开更多
关键词 钻孔瞬变电磁法 扫描探测 量子粒子群优化算法 组合算法 2.5D反演
下载PDF
多场景下基于AHP-EWM的人体健康状态评估模型研究 被引量:2
17
作者 火久元 王虹阳 +1 位作者 巨涛 胡军 《计算机工程》 CAS CSCD 北大核心 2024年第7期372-380,共9页
为解决人体健康评估方法个性化监测不足的问题以及在满足不同场景下健康状态精细化评估的需求,需要一种基于多场景的人体健康状态评估方法来实现长期自动化监测。提出一种基于层次分析法(AHP)和熵权法(EWM)组合的多场景人体健康状态评... 为解决人体健康评估方法个性化监测不足的问题以及在满足不同场景下健康状态精细化评估的需求,需要一种基于多场景的人体健康状态评估方法来实现长期自动化监测。提出一种基于层次分析法(AHP)和熵权法(EWM)组合的多场景人体健康状态评估模型。首先采集人体在运动、休息、工作/学习和娱乐等4种不同场景下的健康监测指标数据,构建相应的评估指标体系。然后分别根据评估指标计算出AHP和EWM权重,再采用量子粒子群优化(QPSO)算法对AHP和EWM中的主客观权重进行分配,以确保评价指标占比的客观性。最后通过模糊综合评价法对人体健康状态进行评估和量化,并利用实际监测数据对方法的可靠性和稳定性进行验证。实验结果表明,在4种场景下所提方法的综合得分分别为63.78、59.83、58.71和59.21,表明在不同场景下该模型都具有较好的准确性和稳定性。根据评估结果,对测试者的身体状态评价结果进行分析,并给出一些健康建议。所提模型可全面了解人体在不同场景下的健康状况,并为人们提供科学的健康指导,从而为健康管理和疾病预防提供科学依据。 展开更多
关键词 健康状态 多重场景 层次分析法 熵权法 量子粒子群优化算法 模糊综合评价法
下载PDF
基于随机增强量子粒子群算法的弹性波数值模拟 被引量:1
18
作者 朱孟权 刘洪 +2 位作者 王之洋 李幼铭 Yu Du-li 《Applied Geophysics》 SCIE CSCD 2024年第1期80-92,204,共14页
在本文中,我们提出了一种随机增强量子粒子群优化算法,并基于该随机增强量子粒子群算法提出了一种新的有限差分格式。随机增强量子粒子群优化算法具有明显的收敛速度优势,可以在第200代内收敛。在相同条件下,未改进的量子粒子群算法的... 在本文中,我们提出了一种随机增强量子粒子群优化算法,并基于该随机增强量子粒子群算法提出了一种新的有限差分格式。随机增强量子粒子群优化算法具有明显的收敛速度优势,可以在第200代内收敛。在相同条件下,未改进的量子粒子群算法的收敛速度远低于随机增强量子粒子群算法。数值频散分析表明,基于随机增强量子粒子群算法的优化有限差分格式具有更大的频谱覆盖范围并将精度误差控制在了有效范围之内,这意味着随机增强量子粒子群算法具有更好的搜索全局精确解的能力。最后,采用基于随机增强量子粒子群算法的优化有限差分格式对弹性波动方程进行数值模拟。数值模拟结果表明,基于随机增强量子粒子群算法的优化有限差分格式能有效压制数值频散。 展开更多
关键词 有限差分 量子粒子群算法 多参数优化
下载PDF
基于相量测量单元优化配置的配电网谐波状态估计研究 被引量:2
19
作者 韩茂岳 尹忠东 +2 位作者 沈子伦 付瑜 汪泽州 《科学技术与工程》 北大核心 2024年第8期3243-3250,共8页
随着大量电力电子设备的接入,配电网谐波问题愈发严重。谐波状态估计的准确性直接影响到后续的谐波治理效果。相量测量单元(phasor measurement unit,PMU)可以实时测量节点电压与支路电流,可借助其实现谐波状态估计。然而目前PMU价格较... 随着大量电力电子设备的接入,配电网谐波问题愈发严重。谐波状态估计的准确性直接影响到后续的谐波治理效果。相量测量单元(phasor measurement unit,PMU)可以实时测量节点电压与支路电流,可借助其实现谐波状态估计。然而目前PMU价格较高,如何进行合理的优化配置保证全网谐波状态可观,同时提高谐波状态估计的准确性,是亟待解决的问题。首先构建以PMU经济配置和谐波状态估计精度最高为目标的PMU优化配置模型,并提出一种改进二进制粒子群-遗传混合算法用于求解。随后在实时仿真器中搭建IEEE14节点模型,选用均值插补法以及Vondrak滤波法进行数据处理并分析了优化所得多种PMU配置场景对谐波状态估计的影响。结果表明:所提算法从减少投资成本及降低谐波状态估计误差角度考虑,能够给出合理的PMU配置方案,有助于支撑工程决策。 展开更多
关键词 谐波可观性 相量测量单元(PMU)优化配置 二进制粒子群-遗传(BPSO-GA)混合算法 谐波状态估计
下载PDF
计及不确定性的随机暂态稳定约束最优潮流
20
作者 刘颂凯 周倩 +3 位作者 杨超 阮肇华 张磊 袁铭洋 《电力系统及其自动化学报》 CSCD 北大核心 2024年第7期1-10,共10页
为应对电力系统中不确定性对系统安全稳定造成的显著影响,提出一种计及不确定性的随机暂态稳定约束最优潮流方法。首先,采用威布尔和正态分布分别描述风电和负荷两种不确定性变量。其次,设置相应的置信水平,基于机会约束理论建立相应的... 为应对电力系统中不确定性对系统安全稳定造成的显著影响,提出一种计及不确定性的随机暂态稳定约束最优潮流方法。首先,采用威布尔和正态分布分别描述风电和负荷两种不确定性变量。其次,设置相应的置信水平,基于机会约束理论建立相应的概率约束,以期望值形式表达目标函数,从而建立计及不确定性的随机暂态稳定约束最优潮流模型。然后,通过半不变量法和Gram-Charlier级数求取电力系统输出变量的累积分布函数,并利用改进量子粒子群算法进行求解。最后,算例分析验证了所提方法的优越性和有效性。 展开更多
关键词 不确定性 随机暂态稳定约束最优潮流 置信水平 半不变量法 量子粒子群优化算法
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部