We consider three random variables X_n, Y_n and Z_n, which represent the numbers of the nodes with 0, 1, and 2 children, in the binary search trees of size n. The expectation and variance of the three above random var...We consider three random variables X_n, Y_n and Z_n, which represent the numbers of the nodes with 0, 1, and 2 children, in the binary search trees of size n. The expectation and variance of the three above random variables are got, and it is also shown that X_n, Y_n and Z_n are all asymptotically normal as n→∞by applying the contraction method.展开更多
In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,w...In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.展开更多
The concurrent manipulation of an expanded AVL tree (EAVL tree) is considered in this paper. The presented system can support any number of concurrent processes which perform searching, insertion and deletion on the t...The concurrent manipulation of an expanded AVL tree (EAVL tree) is considered in this paper. The presented system can support any number of concurrent processes which perform searching, insertion and deletion on the tree. Simulation results indicate the high performance of the system. Elaborate techniques are used to achieve such a system unawilable based on any known algorithms. Methods developed in this paper may provide new insights into other problems in the area of concurrent search structure manipulation.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10671188)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX3-SYW-S02)the Special Foundation of University of Science and Technology of China
文摘We consider three random variables X_n, Y_n and Z_n, which represent the numbers of the nodes with 0, 1, and 2 children, in the binary search trees of size n. The expectation and variance of the three above random variables are got, and it is also shown that X_n, Y_n and Z_n are all asymptotically normal as n→∞by applying the contraction method.
基金the National Natural Science Foundation of China under Grant 61502411Natural Science Foundation of Jiangsu Province under Grant BK20150432 and BK20151299+7 种基金Natural Science Research Project for Universities of Jiangsu Province under Grant 15KJB520034China Postdoctoral Science Foundation under Grant 2015M581843Jiangsu Provincial Qinglan ProjectTeachers Overseas Study Program of Yancheng Institute of TechnologyJiangsu Provincial Government Scholarship for Overseas StudiesTalents Project of Yancheng Institute of Technology under Grant KJC2014038“2311”Talent Project of Yancheng Institute of TechnologyOpen Fund of Modern Agricultural Resources Intelligent Management and Application Laboratory of Huzhou Normal University.
文摘In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.
文摘The concurrent manipulation of an expanded AVL tree (EAVL tree) is considered in this paper. The presented system can support any number of concurrent processes which perform searching, insertion and deletion on the tree. Simulation results indicate the high performance of the system. Elaborate techniques are used to achieve such a system unawilable based on any known algorithms. Methods developed in this paper may provide new insights into other problems in the area of concurrent search structure manipulation.