Rxol cloned from maize is a non-host gene resistant to bacterial leaf streak of rice. pCAMBIA1305-1 with Rxo1 was digested with Sca I and NgoM IV and the double right-border binary vector pMNDRBBin6 was digested with ...Rxol cloned from maize is a non-host gene resistant to bacterial leaf streak of rice. pCAMBIA1305-1 with Rxo1 was digested with Sca I and NgoM IV and the double right-border binary vector pMNDRBBin6 was digested with Hpa I and Xma I. pMNDRBBin6 carrying the gene Rxo1 was acquired by ligation of blunt-end and cohesive end. The results of PCR, restriction enzyme analysis and sequencing indicated that the Rxo1 gene had been cloned into pMNDRBBin6. This double right-border binary vector, named as pMNDRBBin6-Rxol, will play a role in breeding marker-free plants resistant to bacterial leaf streak of rice by genetic transformation.展开更多
Exoplants of tomato(Lycopersicon esculentum) leaf were transformed with Ti plasmids using binary vector system.After screening.with selection culture, kanamycin-resistant seedling were obtained from callus. Molecular ...Exoplants of tomato(Lycopersicon esculentum) leaf were transformed with Ti plasmids using binary vector system.After screening.with selection culture, kanamycin-resistant seedling were obtained from callus. Molecular hybridization proved the integration of Km gene into plant cell genome via A.tumefaciens. Higher activity of Nos-NPTase was demonstrated in the transformed plant,thus confirming the successful expression of the resistance gene in recipient cells.展开更多
A series of high-throughput binary cloning vectors were constructed to facilitate gene function analysis in higher plants. This vector series consists of plasmids designed for plant expression, promoter analysis, gene...A series of high-throughput binary cloning vectors were constructed to facilitate gene function analysis in higher plants. This vector series consists of plasmids designed for plant expression, promoter analysis, gene silencing, and green fluorescent protein fusions for protein localization. These vectors provide for high-throughput and efficient cloning utilizing sites for λ phage integrase/excisionase. In addition, unique restriction sites are incorporated in a multiple cloning site and enable promoter replacement. The entire vector series are available with complete sequence information and detailed annotations and are freely distributed to the scientific community for non-commercial uses.展开更多
A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for...A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for calibration.Data from two underground operations with different drilling technology and different rock mass characteristics are considered,which generalizes the application of the methodology to different sites and ensures the full operational integration of MWD data analysis.Two approaches are followed for site-specific structural model building:a discontinuity index(DI)built from variations in MWD parameters,and a machine learning(ML)classifier as function of the drilling parameters and their variability.The prediction ability of the models is quantitatively assessed as the rate of recognition of discontinuities observed in borehole logs.Differences between the parameters involved in the models for each site,and differences in their weights,highlight the site-dependence of the resulting models.The ML approach offers better performance than the classical DI,with recognition rates in the range 89%to 96%.However,the simpler DI still yields fairly accurate results,with recognition rates 70%to 90%.These results validate the adaptive MWD-based methodology as an engineering solution to predict rock structural condition in underground mining operations.展开更多
The 'double T-DNA' binary vector p13HSR which harbored two independent T-DNAs, containing hygromycin phosphotransferase gene (hpf) in one T-DNA region and three target genes (hLF, SB401, RZ10) in another T-DNA r...The 'double T-DNA' binary vector p13HSR which harbored two independent T-DNAs, containing hygromycin phosphotransferase gene (hpf) in one T-DNA region and three target genes (hLF, SB401, RZ10) in another T-DNA region, was used to generate selectable marker-free transgenic rice by Agrobacterium-mediated transformation. The regenerated plants with both the three target genes and the selectable marker gene hpt were selected for anther culture. RT-PCR analysis indicated that target genes were inserted in rice genomic DNA and successfully transcribed. It took only one year to obtain double haploid selectable marker-free transgenic plants containing the three target genes with co-transformation followed by anther culture technique, and the efficiency was 12.2%. It was also noted that one or two target genes derived from the binary vector were lost in some transgenic rice plants.展开更多
CRISPR-Cas9 system is now widely used to edit a target genome in animals and plants. Cas9 protein derived from Streptococcus pyogenes(Sp Cas9) cleaves double-stranded DNA targeted by a chimeric single-guide RNA(sg ...CRISPR-Cas9 system is now widely used to edit a target genome in animals and plants. Cas9 protein derived from Streptococcus pyogenes(Sp Cas9) cleaves double-stranded DNA targeted by a chimeric single-guide RNA(sg RNA). For plant genome editing, Agrobacterium-mediated T-DNA transformation has been broadly used to express Cas9 proteins and sg RNAs under the control of Ca MV 35 S and U6/U3 promoter, respectively. We here developed a simple and high-throughput binary vector system to clone a 19 20 bp of sg RNA, which binds to the reverse complement of a target locus, in a large T-DNA binary vector containing an Sp Cas9 expressing cassette. Twostep cloning procedures:(1) annealing two target-specific oligonucleotides with overhangs specific to the Aar I restriction enzyme site of the binary vector; and(2) ligating the annealed oligonucleotides into the two Aar I sites of the vector, facilitate the high-throughput production of the positive clones. In addition, Cas9-coding sequence and U6/U3 promoter can be easily exchanged via the GatewayTMsystem and unique Eco RI/Xho I sites on the vector, respectively. We examined the mutation ratio and patterns when we transformed these constructs into Arabidopsis thaliana and a wild tobacco, Nicotiana attenuata. Our vector system will be useful to generate targeted large-scale knock-out lines of model as well as non-model plant.展开更多
文摘Rxol cloned from maize is a non-host gene resistant to bacterial leaf streak of rice. pCAMBIA1305-1 with Rxo1 was digested with Sca I and NgoM IV and the double right-border binary vector pMNDRBBin6 was digested with Hpa I and Xma I. pMNDRBBin6 carrying the gene Rxo1 was acquired by ligation of blunt-end and cohesive end. The results of PCR, restriction enzyme analysis and sequencing indicated that the Rxo1 gene had been cloned into pMNDRBBin6. This double right-border binary vector, named as pMNDRBBin6-Rxol, will play a role in breeding marker-free plants resistant to bacterial leaf streak of rice by genetic transformation.
文摘Exoplants of tomato(Lycopersicon esculentum) leaf were transformed with Ti plasmids using binary vector system.After screening.with selection culture, kanamycin-resistant seedling were obtained from callus. Molecular hybridization proved the integration of Km gene into plant cell genome via A.tumefaciens. Higher activity of Nos-NPTase was demonstrated in the transformed plant,thus confirming the successful expression of the resistance gene in recipient cells.
文摘A series of high-throughput binary cloning vectors were constructed to facilitate gene function analysis in higher plants. This vector series consists of plasmids designed for plant expression, promoter analysis, gene silencing, and green fluorescent protein fusions for protein localization. These vectors provide for high-throughput and efficient cloning utilizing sites for λ phage integrase/excisionase. In addition, unique restriction sites are incorporated in a multiple cloning site and enable promoter replacement. The entire vector series are available with complete sequence information and detailed annotations and are freely distributed to the scientific community for non-commercial uses.
基金conducted under the illu MINEation project, funded by the European Union’s Horizon 2020 research and innovation program under grant agreement (No. 869379)supported by the China Scholarship Council (No. 202006370006)
文摘A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for calibration.Data from two underground operations with different drilling technology and different rock mass characteristics are considered,which generalizes the application of the methodology to different sites and ensures the full operational integration of MWD data analysis.Two approaches are followed for site-specific structural model building:a discontinuity index(DI)built from variations in MWD parameters,and a machine learning(ML)classifier as function of the drilling parameters and their variability.The prediction ability of the models is quantitatively assessed as the rate of recognition of discontinuities observed in borehole logs.Differences between the parameters involved in the models for each site,and differences in their weights,highlight the site-dependence of the resulting models.The ML approach offers better performance than the classical DI,with recognition rates in the range 89%to 96%.However,the simpler DI still yields fairly accurate results,with recognition rates 70%to 90%.These results validate the adaptive MWD-based methodology as an engineering solution to predict rock structural condition in underground mining operations.
文摘The 'double T-DNA' binary vector p13HSR which harbored two independent T-DNAs, containing hygromycin phosphotransferase gene (hpf) in one T-DNA region and three target genes (hLF, SB401, RZ10) in another T-DNA region, was used to generate selectable marker-free transgenic rice by Agrobacterium-mediated transformation. The regenerated plants with both the three target genes and the selectable marker gene hpt were selected for anther culture. RT-PCR analysis indicated that target genes were inserted in rice genomic DNA and successfully transcribed. It took only one year to obtain double haploid selectable marker-free transgenic plants containing the three target genes with co-transformation followed by anther culture technique, and the efficiency was 12.2%. It was also noted that one or two target genes derived from the binary vector were lost in some transgenic rice plants.
基金supported by Institute for Basic Science (IBS-R021-D1)
文摘CRISPR-Cas9 system is now widely used to edit a target genome in animals and plants. Cas9 protein derived from Streptococcus pyogenes(Sp Cas9) cleaves double-stranded DNA targeted by a chimeric single-guide RNA(sg RNA). For plant genome editing, Agrobacterium-mediated T-DNA transformation has been broadly used to express Cas9 proteins and sg RNAs under the control of Ca MV 35 S and U6/U3 promoter, respectively. We here developed a simple and high-throughput binary vector system to clone a 19 20 bp of sg RNA, which binds to the reverse complement of a target locus, in a large T-DNA binary vector containing an Sp Cas9 expressing cassette. Twostep cloning procedures:(1) annealing two target-specific oligonucleotides with overhangs specific to the Aar I restriction enzyme site of the binary vector; and(2) ligating the annealed oligonucleotides into the two Aar I sites of the vector, facilitate the high-throughput production of the positive clones. In addition, Cas9-coding sequence and U6/U3 promoter can be easily exchanged via the GatewayTMsystem and unique Eco RI/Xho I sites on the vector, respectively. We examined the mutation ratio and patterns when we transformed these constructs into Arabidopsis thaliana and a wild tobacco, Nicotiana attenuata. Our vector system will be useful to generate targeted large-scale knock-out lines of model as well as non-model plant.