期刊文献+
共找到178篇文章
< 1 2 9 >
每页显示 20 50 100
Molecular Characterization, Expression Patterns and Binding Properties of Two Pheromone-Binding Proteins from the Oriental Fruit Moth, Grapholita molesta(Busck) 被引量:9
1
作者 SONG Yue-qin DONG Jun-feng +1 位作者 QIAO Hui-li WU Jun-xiang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第12期2709-2720,共12页
Insect pheromone-binding proteins (PBPs) play important roles in transporting hydrophobic pheromone components across the sensillum lymph to the surface of olfactory receptors (ORs). However, the PBPs of the orien... Insect pheromone-binding proteins (PBPs) play important roles in transporting hydrophobic pheromone components across the sensillum lymph to the surface of olfactory receptors (ORs). However, the PBPs of the oriental fruit moth, Grapholita molesta, an important destructive pest of stone fruits worldwide, are not well characterized. In this study, two new putative PBP genes, GmolPBP2 and GmolPBP3, were identiifed from G. molesta antennae. The deduced amino-acid sequences of these two putative PBP genes are characteristic of the odorant binding protein family, containing six conserved cysteine residues. The genomic DNA sequence of each gene contained two introns. However, the lengths and positions of the introns differed. RT-PCR analyses revealed that the two GmolPBP genes are only expressed in the antennae of female and male moths. Quantitative real-time PCR indicated that the transcription levels of GmolPBP2 are far greater than those of GmolPBP3 in both female and male antennae. GmolPBP3 showed higher transcription levels in female antennae than in male antennae, while GmolPBP2 showed similar transcription levels in both female and male antennae. The transcript levels of both genes were signiifcantly different in premating and post-coitum individuals, implying that mating affects the process of sex pheromone reception. To better understand the functions, two GmolPBPs were expressed in Escherichia coli, and the ligand binding assays were conducted. Results showed that GmolPBP2 has strong binding afifnities to two sex pheromone components, E8-12:Ac and Z8-12:Ac, as well as weaker binding afifnities to Z8-12:OH and 12:OH. GmolPBP2 also bound some ordinary odor molecules. However, the afifnity of GmolPBP3 to both sex pheromones and ordinary odor molecules was very weak. These results show that GmolPBP2 plays the main role in pheromone discrimination and recognition in the oriental fruit moth. 展开更多
关键词 Grapholita molesta pheromone-binding proteins molecular cloning mRNA expression prokaryotic expression lfuorescence competitive binding assays
下载PDF
Advances on Plant Pathogenic Mycotoxin Binding Proteins
2
作者 WANG Chao-hua and DONG Jin-gao(Mycotoxin Laboratory , Hebei Agricultural University . Baoding 071001 ,P. R. China) 《Agricultural Sciences in China》 CAS CSCD 2002年第11期1216-1223,共8页
Toxin-binding protein is one of the key subjects in plant pathogenic mycotoxin research. In this paper, new advances in toxin-binding proteins of 10 kinds of plant pathogenic mycotoxins belonging to Hel-minthosporium,... Toxin-binding protein is one of the key subjects in plant pathogenic mycotoxin research. In this paper, new advances in toxin-binding proteins of 10 kinds of plant pathogenic mycotoxins belonging to Hel-minthosporium,Alternaria,Fusicoccum,Verticillium were reviewed, especially the techniques and methods of toxin-binding proteins of HS-toxin, HV-toxin, HMT-toxin, HC-toxin. It was proposed that the isotope-labeling technique and immunological chemistry technique should be combined together in research of toxin-binding protein, which will be significant to study the molecular recognition mechanism between host and pathogenic fungus. 展开更多
关键词 FUNGUS MYCOTOXIN binding proteins Action site
下载PDF
Novel Treatment Approach in Schizophrenia: Substitution of Glial Binding Proteins
3
作者 Bernhard J. Mitterauer 《Advances in Bioscience and Biotechnology》 2016年第10期392-402,共11页
In chronic schizophrenia, synaptic information processing is unbalanced, as shown in a model of glial-neuronal synaptic units, called tripartite synapses. The glial component of the synapse exerts a modifying function... In chronic schizophrenia, synaptic information processing is unbalanced, as shown in a model of glial-neuronal synaptic units, called tripartite synapses. The glial component of the synapse exerts a modifying function in neurotransmission since the astrocyte activated by neurotransmitters produces gliotransmitters that negatively feedback to the presynapse. It is hypothesized that in schizophrenia nonfunctional astrocytic receptors cannot be activated, thus losing their modulating function. This causes a generalization of information processing in the neuronal networks such that the brain is unable to distinguish between subjects and objects in the environment. Delusions, hallucinations and cognitive impairment occur on the behavioral level. In a model of a cholinergic tripartite synapse, it is shown that glial binding proteins modify neurotransmission by occupancy with cognate neurotransmitters temporarily turning off neurotransmission on the presynapse. Most recently, glial binding proteins have been engineered. It is proposed that the substitution of glial binding proteins may balance synaptic information processing in schizophrenia since these proteins exert a modulatory function comparable to functional astrocytic receptors. Rap- id technical developments may enable this novel treatment approach in schizophrenia. 展开更多
关键词 SCHIZOPHRENIA Synaptic unbalance Astrocytic Receptors Glial binding Protein TREATMENT
下载PDF
The RNA binding proteins TIA1 and TIAL1 promote Mcl1 mRNA translation to protect germinal center responses from apoptosis 被引量:1
4
作者 Ines COsma-Garcia Mailys Mouysset +3 位作者 Dunja Capitan-Sobrino Yann Aubert Martin Turner Manuel D.Diaz-Muñoz 《Cellular & Molecular Immunology》 SCIE CAS CSCD 2023年第9期1063-1076,共14页
Germinal centers(GCs)are essential for the establishment of long-lasting antibody responses.GC B cells rely on post-transcriptional RNA mechanisms to translate activation-associated transcriptional programs into funct... Germinal centers(GCs)are essential for the establishment of long-lasting antibody responses.GC B cells rely on post-transcriptional RNA mechanisms to translate activation-associated transcriptional programs into functional changes in the cell proteome.However,the critical proteins driving these key mechanisms are still unknown.Here,we show that the RNA binding proteins TIA1 and TIAL1 are required for the generation of long-lasting GC responses.TIA1-and TIAL1-deficient GC B cells fail to undergo antigen-mediated positive selection,expansion and differentiation into B-cell clones producing high-affinity antibodies.Mechanistically,TIA1 and TIAL1 control the transcriptional identity of dark-and light-zone GC B cells and enable timely expression of the prosurvival molecule MCL1.Thus,we demonstrate here that TIA1 and TIAL1 are key players in the post-transcriptional program that selects high-affinity antigen-specific GC B cells. 展开更多
关键词 Adaptive immunity Germinal centers Post-transcriptional gene regulation RNA binding proteins Cell identity Apoptosis/10.1038/s41423-023-01063-4
原文传递
Targeted Degradation of DNA/RNA Binding Proteins via Covalent Hydrophobic Tagging
5
作者 Yan Wang Jingzi Zhang +4 位作者 Jiafang Deng Chengzhi Wang Lei Fang Yan Zhang Jinbo Li 《CCS Chemistry》 CSCD 2023年第10期2207-2214,共8页
Targeted protein degradation(TPD)holds great promise for biological inquiry and therapeutic development.However,it still remains elusive to destruct DNA/RNA binding proteins(DBPs/RBPs)previously deemed undruggable.Her... Targeted protein degradation(TPD)holds great promise for biological inquiry and therapeutic development.However,it still remains elusive to destruct DNA/RNA binding proteins(DBPs/RBPs)previously deemed undruggable.Herein,we report ligandassisted covalent hydrophobic tagging(LACHT)as a modular strategy for TPD of these difficult-totarget proteins.Guided by a noncovalent protein ligand,LACHT leverages a reactive N-acyl-N-alkyl sulfonamide group to covalently label the protein target with a hydrophobic adamantane,which further engages the cellular quality control mechanism to induce proteolytic degradation.Using a smallmolecule ligand,we demonstrated that LACHT allowed TPD of a DBP,bromodomain-containing protein 4,in human leukemia cells with high efficiency.Mechanistic studies revealed that LACHT-mediated TPD dependent on ligand-directed irreversible tagging and the covalently labeled proteins underwent polyubiquitination before removal through both the proteasome and the lysosome.Furthermore,when an RNA ligand was employed,we showed that LACHT also enabled TPD of an RBP,Lin28a,leading to upregulation of its downstream let-7 miRNA.This study thus provides a generalizable platform to expand the TPD toolbox for biomedical applications. 展开更多
关键词 targeted protein degradation covalent labeling hydrophobic tagging DNA/RNA binding proteins miRNA
原文传递
GATA binding protein 2 mediated ankyrin repeat domain containing 26 high expression in myeloid-derived cell lines
6
作者 Yang-Zhou Jiang Lan-Yue Hu +11 位作者 Mao-Shan Chen Xiao-Jie Wang Cheng-Ning Tan Pei-Pei Xue Teng Yu Xiao-Yan He Li-Xin Xiang Yan-Ni Xiao Xiao-Liang Li Qian Ran Zhong-Jun Li Li Chen 《World Journal of Stem Cells》 SCIE 2024年第5期538-550,共13页
BACKGROUND Thrombocytopenia 2,an autosomal dominant inherited disease characterized by moderate thrombocytopenia,predisposition to myeloid malignancies and normal platelet size and function,can be caused by 5’-untran... BACKGROUND Thrombocytopenia 2,an autosomal dominant inherited disease characterized by moderate thrombocytopenia,predisposition to myeloid malignancies and normal platelet size and function,can be caused by 5’-untranslated region(UTR)point mutations in ankyrin repeat domain containing 26(ANKRD26).Runt related transcription factor 1(RUNX1)and friend leukemia integration 1(FLI1)have been identified as negative regulators of ANKRD26.However,the positive regulators of ANKRD26 are still unknown.AIM To prove the positive regulatory effect of GATA binding protein 2(GATA2)on ANKRD26 transcription.METHODS Human induced pluripotent stem cells derived from bone marrow(hiPSC-BM)INTRODUCTION Ankyrin repeat domain containing protein 26(ANKRD26)acts as a regulator of adipogenesis and is involved in the regulation of feeding behavior[1-3].The ANKRD26 gene is located on chromosome 10 and shares regions of homology with the primate-specific gene family POTE.According to the Human Protein Atlas database,the ANKRD26 protein is localized to the Golgi apparatus and vesicles,and its expression can be detected in nearly all human tissues[4].Moreover,UniProt annotation revealed that ANKRD26 is localized in the centrosome and contains coiled-coil domains formed by spectrin helices and ankyrin repeats[5,6].The most common disease related to ANKRD26 is thrombocytopenia 2(THC2),which is a rare autosomal dominant inherited disease characterized by lifelong mild-to-moderate thrombocytopenia and mild bleeding[7-9].Caused by the variants in the 5’-untranslated region(UTR)of ANKRD26,THC2 is defined by a decrease in the number of platelets in circulating blood and results in increased bleeding and decreased clotting ability[8,10].Due to the point mutations that occur in the 5’-UTR of ANKRD26,its negative transcription factors(TFs),Runt related transcription factor 1(RUNX1)and friend leukemia integration 1(FLI1),lose their repression effect[11].The persistent expression of ANKRD26 increases the activity of the mitogen activated protein kinase and extracellular signal regulated kinase 1/2 signaling pathways,which are potentially involved in the regulation of thrombopoietin-dependent signaling and further impair proplatelet formation by megakaryocytes(MKs)[11].However,the positive regulators of ANKRD26,which might be associated with THC2 pathology,are still unknown. 展开更多
关键词 Ankyrin repeat domain containing 26 GATA binding protein 2 Thrombocytopenia 2 Transcriptional regulation Myeloid-derived cell lines
下载PDF
Fatty acid binding protein 5 is a novel therapeutic target for hepatocellular carcinoma
7
作者 Yan Li William Lee +3 位作者 Zhen-Gang Zhao Yi Liu Hao Cui Hao-Yu Wang 《World Journal of Clinical Oncology》 2024年第1期130-144,共15页
BACKGROUND Hepatocellular carcinoma(HCC)is an aggressive subtype of liver cancer and is one of the most common cancers with high mortality worldwide.Reprogrammed lipid metabolism plays crucial roles in HCC cancer cell... BACKGROUND Hepatocellular carcinoma(HCC)is an aggressive subtype of liver cancer and is one of the most common cancers with high mortality worldwide.Reprogrammed lipid metabolism plays crucial roles in HCC cancer cell survival,growth,and evolution.Emerging evidence suggests the importance of fatty acid binding proteins(FABPs)in contribution to cancer progression and metastasis;however,how these FABPs are dysregulated in cancer cells,especially in HCC,and the roles of FABPs in cancer progression have not been well defined.AIM To understand the genetic alterations and expression of FABPs and their associated cancer hallmarks and oncogenes in contributing to cancer malignancies.METHODS We used The Cancer Genome Atlas datasets of pan cancer and liver hepatocellular carcinoma(LIHC)as well as patient cohorts with other cancer types in this study.We investigated genetic alterations of FABPs in various cancer types.mRNA expression was used to determine if FABPs are abnormally expressed in tumor tissues compared to non-tumor controls and to investigate whether their expression correlates with patient clinical outcome,enriched cancer hallmarks and oncogenes previously reported for patients with HCC.We determined the protein levels of FABP5 and its correlated genes in two HCC cell lines and assessed the potential of FABP5 inhibition in treating HCC cells.RESULTS We discovered that a gene cluster including five FABP family members(FABP4,FABP5,FABP8,FABP9 and FABP12)is frequently co-amplified in cancer.Amplification,in fact,is the most common genetic alteration for FABPs,leading to overexpression of FABPs.FABP5 showed the greatest differential mRNA expression comparing tumor with non-tumor tissues.High FABP5 expression correlates well with worse patient outcomes(P<0.05).FABP5 expression highly correlates with enrichment of G2M checkpoint(r=0.33,P=1.1e-10),TP53 signaling pathway(r=0.22,P=1.7e-5)and many genes in the gene sets such as CDK1(r=0.56,P=0),CDK4(r=0.49,P=0),and TP53(r=0.22,P=1.6e-5).Furthermore,FABP5 also correlates well with two co-expressed oncogenes PLK1 and BIRC5 in pan cancer especially in LIHC patients(r=0.58,P=0;r=0.58,P=0;respectively).FABP5high Huh7 cells also expressed higher protein levels of p53,BIRC5,CDK1,CDK2,and CDK4 than FABP5low HepG2 cells.FABP5 inhibition more potently inhibited the tumor cell growth in Huh7 cells than in HepG2 cells.CONCLUSION We discovered that FABP5 gene is frequently amplified in cancer,especially in HCC,leading to its significant elevated expression in HCC.Its high expression correlates well with worse patient outcome,enriched cancer hallmarks and oncogenes in HCC.FABP5 inhibition impaired the cell viability of FABP5high Huh7 cells.All these support that FABP5 is a novel therapeutic target for treating FABP5high HCC. 展开更多
关键词 Hepatocellular carcinoma Fatty acid binding protein Novel target AMPLIFICATION Correlated expression
下载PDF
RNA binding proteins in spermatogenesis: an in depth focus on the Musashi family 被引量:4
8
作者 Jessie M Sutherland Nicole A Siddall +1 位作者 Gary R Hime Eileen A McLaughlin 《Asian Journal of Andrology》 SCIE CAS CSCD 2015年第4期529-536,共8页
Controlled gene regulation during gamete development is vital for maintaining reproductive potential. During the complex process of mammalian spermatogenesis, male germ cells experience extended periods of the inactiv... Controlled gene regulation during gamete development is vital for maintaining reproductive potential. During the complex process of mammalian spermatogenesis, male germ cells experience extended periods of the inactive transcription despite heavy translational requirements for continued growth and differentiation. Hence, spermatogenesis is highly reliant on mechanisms of posttranscriptional regulation of gene expression, facilitated by RNA binding proteins (RBPs), which remain abundantly expressed throughout this process. One such group of proteins is the Musashi family, previously identified as critical regulators of testis germ cell development and meiosis in Drosophila, and also shown to be vital to sperm development and reproductive potential in the mouse. This review describes the role and function of RBPs our recent knowledge of the Musashi proteins in spermatogenesis. within the scope of male germ cell development, focusing on The functional mechanisms utilized by RBPs within the cell are outlined in depth, and the significance of sub-cellular localization and stage-specific expression in relation to the mode and impact of posttranscriptional regulation is also highlighted. We emphasize the historical role of the Musashi family of RBPs in stem cell function and cell fate determination, as originally characterized in Drosophila and Xenopus, and conclude with our current understanding of the differential roles and functions of the mammalian Musashi proteins, Musashi-1 and Musashi-2, with a primary focus on our findings in spermatogenesis. This review highlights both the essential contribution of RBPs to posttranscriptional regulation and the importance of the Musashi family as master regulators of male gamete development. 展开更多
关键词 gene regulation Musashi MUSASHI-1 Musashi-2 posttranscriptional control RNA binding proteins SPERMATOGENESIS SPLICING TESTIS translation
原文传递
Application of Cydia pomonella expressed sequence tags: Identification and expression of three general odorant binding proteins in codling moth 被引量:7
9
作者 Stephen F. Garczynski Brad S. Coates +4 位作者 Thomas R. Unruh Scott Schaeffer Derick Jiwan Tyson Koepke Amit Dhingra 《Insect Science》 SCIE CAS CSCD 2013年第5期559-574,共16页
The codling moth, Cydia pomonella, is one of the most important pests of pome fruits in the world, yet the molecular genetics and the physiology of this insect remain poorly understood. A combined assembly of 8?341 e... The codling moth, Cydia pomonella, is one of the most important pests of pome fruits in the world, yet the molecular genetics and the physiology of this insect remain poorly understood. A combined assembly of 8?341 expressed sequence tags was generated from Roche 454 GS-FLX sequencing of eight tissue-specific cDNA libraries. Putative chemosensory proteins (12) and odorant binding proteins (OBPs) (18) were annotated, which included three putative general OBP (GOBP), one more than typically reported for other Lepidoptera. To further characterize CpomGOBPs, we cloned cDNA copies of their transcripts and determined their expression patterns in various tissues. Cloning and sequencing of the 698?nt transcript for CpomGOBP1 resulted in the prediction of a 163 amino acid coding region, and subsequent RT-PCR indicated that the transcripts were mainly expressed in antennae and mouthparts. The 1?289 nt (160 amino acid) CpomGOBP2 and the novel 702 nt (169 amino acid) CpomGOBP3 transcripts are mainly expressed in antennae, mouthparts, and female abdomen tips. These results indicate that next generation sequencing is useful for the identification of novel transcripts of interest, and that codling moth expresses a transcript encoding for a new member of the GOBP subfamily. 展开更多
关键词 codling moth EST odorant binding proteins
原文传递
Salt Dependent Association of Novel Mutants of TATA-Binding Proteins to DNA:Predictions from Theory and Experiments
10
作者 Johan H.Bredenberg Marcia O.Fenley 《Communications in Computational Physics》 SCIE 2008年第5期1132-1153,共22页
The nonlinear Poisson-Boltzmann predictions of the salt-dependent association of proteins to DNA,SKpred,are fairly insensitive to the choice of atomic charges,radii,interior dielectric constant and treatment of the bo... The nonlinear Poisson-Boltzmann predictions of the salt-dependent association of proteins to DNA,SKpred,are fairly insensitive to the choice of atomic charges,radii,interior dielectric constant and treatment of the boundary between a biomolecule and the solvent.In this study we show that the SKpred is highly correlated with the conformational adaptability of the partners involved in the biomolecular binding process.This is demonstrated for the wild-type and mutant forms of the archaeon Pyrococcus woesi TATA-binding protein(PwTBP)in complex with DNA,on which we performed molecular mechanics energy minimizations with different protocols,and molecular dynamics simulations and then computed the SKpred on the resulting structures.It was found that the inter-molecular non bonded force field energy between the DNA and protein correlates linearly and significantly well with the SKpred.This correlation encompasses the wild-type and mutant variants of the PwTBP and provides us with a quick way to estimate the SKpred from a large ensemble of structures generated with Molecular Dynamics or Monte Carlo simulations.The corresponding experimental SKobs should also correlate with the inter-molecular non bonded force field energy between the protein and DNA,given that the underlying mechanisms in binding and salt-dependent effects are in fact the main contributors in the association of proteins/peptides to nucleic acids.We show that it is possible to fit experiments versus the inter-molecular non bonded force field energy between the protein and DNA,and use this relation to predict the SKobs in absolute numbers.Thus,we present two novel approaches to estimate both the SKpred and the SKobs for in silico modelled PwTBP novel mutants and even for TBPs from other organisms.This is a simple but powerful tool to suggest new experiments on the TBP-DNA type of macromolecular assemblies.We conclude by suggesting some mutants and a possible biological interpretation of how changes in solvent salinity affect the binding of proteins to DNA. 展开更多
关键词 Poisson-Boltzmann equation ELECTROSTATICS salt dependence binding molecular mechanics DNA TATA binding proteins.
原文传递
Effects of different brush border membrane vesicle isolation protocols on proteomic analysis of Cry1Ac binding proteins from the midgut of Helicoverpa armigera 被引量:3
11
作者 Li-Zhen Chen Ge-Mei Liang +3 位作者 Brian G. Rector Jie Zhang Kong-Ming Wu Yu-Yuan Guo 《Insect Science》 SCIE CAS CSCD 2008年第6期497-503,共7页
Brush border membrane vesicles (BBMV) isolated from insect midguts have been widely used to study CrylA binding proteins. Sample preparation is important in two- dimensional electrophoresis (2-DE), so to determine... Brush border membrane vesicles (BBMV) isolated from insect midguts have been widely used to study CrylA binding proteins. Sample preparation is important in two- dimensional electrophoresis (2-DE), so to determine a suitable BBMV preparation method in Helicoverpa armigera for 2-DE, we compared three published BBMV preparation methods mostly used in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS- PAGE). All methods yielded similar types and numbers of binding proteins, but in different quantities. The Abdul-Rauf and Ellar protocol was the best of the three, but had limitations. Sufficient protein quantity is important for research involving limited numbers of insects, such as studies of insect resistance to Bacillus thuringiensis in the field. Consequently, we integrated the three BBMV isolation methods into a single protocol that yielded high quantities of BBMV proteins from H. armigera larval midguts, which proved suitable for 2- DE analysis. 展开更多
关键词 Bacillus thuringiensis binding protein brush border membrane vesicles Cry1Ac Helicoverpa armigera two-dimensional electrophoresis
原文传递
Insulin-like growth factor binding proteins 7 prevents dental pulp-derived mesenchymal stem cell senescence via metabolic downregulation of p21 被引量:1
12
作者 Xiaoyu Li Liang Feng +3 位作者 Chunmei Zhang Jinsong Wang Songlin Wang Lei Hu 《Science China(Life Sciences)》 SCIE CAS CSCD 2022年第11期2218-2232,共15页
Cellular senescence affects the efficacy of mesenchymal stem cells(MSCs)-mediated tissue regeneration.Insulin-like growth factor binding proteins-7(IGFBP7),as a member of the IGF family,is associated with osteogenic d... Cellular senescence affects the efficacy of mesenchymal stem cells(MSCs)-mediated tissue regeneration.Insulin-like growth factor binding proteins-7(IGFBP7),as a member of the IGF family,is associated with osteogenic differentiation and the senescence of MSCs,but its exact function and mechanism remain unclear.We found IGFBP7 promoted the osteogenic differentiation and prevented the senescence of dental pulp-derived MSCs(DPSCs),as observed in the gain-of-function and lossof-function analyses,the senescence-associated marker p21 showed the most pronounced expression changes.We demonstrated that IGFBP7 activated the biological activity of SIRT1 deacetylase via metabolism,resulting in a deacetylation of H3K36ac and a decrease of the binding affinity of H3K36ac to p21 promoter,thereby reducing the transcription of p21,which ultimately prevents DPSCs senescence and promotes tissue regeneration.The activation of the mitochondrial electron transport chain(ETC)by Coenzyme Q10 could rescue the promotion of DPSC senescence induced by the knockdown of IGFBP7,whereas the inhibition of ETC by rotenone attenuated the prevention of DPSC senescence induced by IGFBP7 overexpression.In conclusion,our present results reveal a novel function of IGFBP7 in preventing DPSC senescence via the metabolism-induced deacetylation of H3K36ac and reduction of p21 transcription,suggesting that IGFBP7 is a potential target for promoting tissue regeneration in an aging environment. 展开更多
关键词 dental pulp-derived mesenchymal stem cells insulin-like growth factor binding protein 7 SENESCENCE metabolism SIRT1 P21
原文传递
Knockdown of polypyrimidine tract binding protein facilitates motor function recovery after spinal cord injury 被引量:1
13
作者 Ri-Yun Yang Rui Chai +7 位作者 Jing-Ying Pan Jing-Yin Bao Pan-Hui Xia Yan-Kai Wang Ying Chen Yi Li Jian Wu Gang Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期396-403,共8页
After spinal cord injury(SCI),a fibroblast-and microglia-mediated fibrotic scar is formed in the lesion core,and a glial scar is formed around the fibrotic scar as a res ult of the activation and proliferation of astr... After spinal cord injury(SCI),a fibroblast-and microglia-mediated fibrotic scar is formed in the lesion core,and a glial scar is formed around the fibrotic scar as a res ult of the activation and proliferation of astrocytes.Simultaneously,a large number of neuro ns are lost in the injured area.Regulating the dense glial scar and re plenishing neurons in the injured area are essential for SCI repair.Polypyrimidine tra ct binding protein(PTB),known as an RNA-binding protein,plays a key role in neurogenesis.Here,we utilized short hairpin RNAs(shRNAs)and antisense oligonucleotides(ASOs)to knock down PTB expression.We found that reactive spinal astrocytes from mice were directly reprogrammed into motoneuron-like cells by PTB downregulation in vitro.In a mouse model of compressioninduced SCI,adeno-associated viral shRNA-mediated PTB knockdown replenished motoneuron-like cells around the injured area.Basso Mouse Scale scores and forced swim,inclined plate,cold allodynia,and hot plate tests showed that PTB knockdown promoted motor function recovery in mice but did not improve sensory perception after SCI.Furthermore,ASO-mediated PTB knockdown improved motor function resto ration by not only replenishing motoneuron-like cells around the injured area but also by modestly reducing the density of the glial scar without disrupting its overall structure.Together,these findings suggest that PTB knockdown may be a promising therapeutic strategy to promote motor function recovery during spinal cord repair. 展开更多
关键词 antisense oligonucleotides ASTROCYTES glial scar motoneuron-like cells motor function NEUROGENESIS neuron-like cells polypyrimidine tract binding protein short hairpin RNAs spinal cord repair
下载PDF
Large-scale analysis of the position-dependent binding and regulation of human RNA binding proteins
14
作者 Jianan Lin Zhengqing Ouyang 《Quantitative Biology》 CAS CSCD 2020年第2期119-129,共11页
Background:RNA binding proteins(RBPs)play essential roles in the regulation of RNA metabolism.Recent studies have disclosed that RBPs achieve their functions via binding to their targets in a position-dependent patter... Background:RNA binding proteins(RBPs)play essential roles in the regulation of RNA metabolism.Recent studies have disclosed that RBPs achieve their functions via binding to their targets in a position-dependent pattern on RNAs.However,few studies have systematially addressed the associations between the RBP's functions and their positional binding preferences.Methods:Here,we present large-scale analyses on the functional targets of human RBPs by integrating the enhanced cross-linking and immunoprecipitation followed by sequencing(eCLIP-seq)datasets and the shRNA knockdown followed by RNA-seq datasets that are deposited in the integrated ENCyclopedia of DNA Elements in the human genome(ENCODE)data portal.Results:We found that(1)binding to the translation termination site and the 3'untranslated region is important to most human RBP's in the RNA decay regulation;(2)RBPs’binding and regulation follow a cell-ty pe specific pattern.Conclusions:These analysis results show the strong relationship between the binding position and the functions of RBPs,which provides novel insights into the RBPs'regulation mechanisms. 展开更多
关键词 RNA binding protein CLIP-seq RNA-SEQ KNOCKDOWN RNA regulation
原文传递
Multifaced regulator: RNA binding proteins and their roles in hematopoiesis
15
作者 Yue Ren Yue Huo +2 位作者 Weiqian Li Fang Wang Jia Yu 《Blood Science》 2019年第1期69-72,共4页
Despite the conventional definition of RNA binding proteins(RBPs)as controlling the metabolism of their bound RNAs,more and more RBPs are found to function via distinct ways in complex biological processes.With the re... Despite the conventional definition of RNA binding proteins(RBPs)as controlling the metabolism of their bound RNAs,more and more RBPs are found to function via distinct ways in complex biological processes.With the recent discovery of transcriptional regulation activity of some RBPs,a hypothesis that RBPs could be multilayered regulators orchestrating gene expression has emerged.Hematopoiesis is a stepwise process that needs to be fine-tuned to keep the subtle balance between hematopoietic stem cell(HSC)stemness maintenance and downstream lineage commitment.Although the classic RBPs account for the posttranscriptional regulation in hematopoiesis,the importance and multiple regulatory capacities of RBPs have not been wellcharacterized.In this review,we summarize the recent findings of large-scale screening of novel RBPs and their novel transcriptional regulation potentials.In hematopoietic system,this kind of multifaced regulators account for nearly a half of functional RBPs.Therefore,further studies on identifying this new kind of multifaced RBPs and clarifying their regulatory mechanisms would help us better understand the precise and complex regulatory networks of gene expression in hematopoiesis. 展开更多
关键词 HEMATOPOIESIS RNA binding protein
原文传递
Comparison of ligand migration and binding in heme proteins of the globin family
16
作者 Karin Nienhaus G.Ulrich Nienhaus 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期109-118,共10页
The binding of small diatomic ligands such as carbon monoxide or dioxygen to heme proteins is among the simplest biological processes known. Still, it has taken many decades to understand the mechanistic aspects of th... The binding of small diatomic ligands such as carbon monoxide or dioxygen to heme proteins is among the simplest biological processes known. Still, it has taken many decades to understand the mechanistic aspects of this process in full detail. Here, we compare ligand binding in three heme proteins of the globin family, myoglobin, a dimeric hemoglobin, and neuroglobin. The combination of structural, spectroscopic, and kinetic experiments over many years by many laboratories has revealed common properties of globins and a clear mechanistic picture of ligand binding at the molecular level. In addition to the ligand binding site at the heme iron, a primary ligand docking site exists that ensures efficient ligand binding to and release from the heme iron. Additional, secondary docking sites can greatly facilitate ligand escape after its dissociation from the heme. Although there is only indirect evidence at present, a preformed histidine gate appears to exist that allows ligand entry to and exit from the active site. The importance of these features can be assessed by studies involving modified proteins(via site-directed mutagenesis) and comparison with heme proteins not belonging to the globin family. 展开更多
关键词 flash photolysis ligand binding time-resolved spectroscopy heme protein
下载PDF
Fidgetin interacting with microtubule end binding protein EB3 affects axonal regrowth in spinal cord injury
17
作者 Chao Ma Junpei Wang +8 位作者 Qifeng Tu Weijuan Bo Zunlu Hu Run Zhuo Ronghua Wu Zhangji Dong Liang Qiang Yan Liu Mei Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2727-2732,共6页
Fidgetin,a microtubule-severing enzyme,regulates neurite outgrowth,axonal regeneration,and cell migration by trimming off the labile domain of microtubule polymers.Because maintenance of the microtubule labile domain ... Fidgetin,a microtubule-severing enzyme,regulates neurite outgrowth,axonal regeneration,and cell migration by trimming off the labile domain of microtubule polymers.Because maintenance of the microtubule labile domain is essential for axon initiation,elongation,and navigation,it is of interest to determine whether augmenting the microtubule labile domain via depletion of fidgetin serves as a therapeutic approach to promote axonal regrowth in spinal cord injury.In this study,we constructed rat models of spinal cord injury and sciatic nerve injury.Compared with spinal cord injury,we found that expression level of tyrosinated microtubules in the labile portion of microtubules continuously increased,whereas fidgetin decreased after peripheral nerve injury.Depletion of fidgetin enhanced axon regeneration after spinal cord injury,whereas expression level of end binding protein 3(EB3)markedly increased.Next,we performed RNA interference to knockdown EB3 or fidgetin.We found that deletion of EB3 did not change fidgetin expression.Conversely,deletion of fidgetin markedly increased expression of tyrosinated microtubules and EB3.Deletion of fidgetin increased the amount of EB3 at the end of neurites and thereby increased the level of tyrosinated microtubules.Finally,we deleted EB3 and overexpressed fidgetin.We found that fidgetin trimmed tyrosinated tubulins by interacting with EB3.When fidgetin was deleted,the labile portion of microtubules was elongated,and as a result the length of axons and number of axon branches were increased.These findings suggest that fidgetin can be used as a novel therapeutic target to promote axonal regeneration after spinal cord injury.Furthermore,they reveal an innovative mechanism by which fidgetin preferentially severs labile microtubules. 展开更多
关键词 acetylated microtubules axon regeneration axonal branching axonal regrowth end binding protein 3 fidgetin microtubule dynamics sciatic nerve injury spinal cord injury tyrosinated microtubules
下载PDF
Post-transcriptional mechanisms controlling neurogenesis and direct neuronal reprogramming
18
作者 Elsa Papadimitriou Dimitra Thomaidou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1929-1939,共11页
Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells ... Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells towards the neuronal state is achieved due to sophisticated mechanisms of epigenetic,transcriptional,and post-transcriptional regulation.Understanding these neurogenic mechanisms is of major importance,not only for shedding light on very complex and crucial developmental processes,but also for the identification of putative reprogramming factors,that harbor hierarchically central regulatory roles in the course of neurogenesis and bare thus the capacity to drive direct reprogramming towards the neuronal fate.The major transcriptional programs that orchestrate the neurogenic process have been the focus of research for many years and key neurogenic transcription factors,as well as repressor complexes,have been identified and employed in direct reprogramming protocols to convert non-neuronal cells,into functional neurons.The post-transcriptional regulation of gene expression during nervous system development has emerged as another important and intricate regulatory layer,strongly contributing to the complexity of the mechanisms controlling neurogenesis and neuronal function.In particular,recent advances are highlighting the importance of specific RNA binding proteins that control major steps of mRNA life cycle during neurogenesis,such as alternative splicing,polyadenylation,stability,and translation.Apart from the RNA binding proteins,microRNAs,a class of small non-coding RNAs that block the translation of their target mRNAs,have also been shown to play crucial roles in all the stages of the neurogenic process,from neural stem/progenitor cell proliferation,neuronal differentiation and migration,to functional maturation.Here,we provide an overview of the most prominent post-transcriptional mechanisms mediated by RNA binding proteins and microRNAs during the neurogenic process,giving particular emphasis on the interplay of specific RNA binding proteins with neurogenic microRNAs.Taking under consideration that the molecular mechanisms of neurogenesis exert high similarity to the ones driving direct neuronal reprogramming,we also discuss the current advances in in vitro and in vivo direct neuronal reprogramming approaches that have employed microRNAs or RNA binding proteins as reprogramming factors,highlighting the so far known mechanisms of their reprogramming action. 展开更多
关键词 direct neuronal reprogramming in vivo glia-to-neuron conversion microRNAs NEUROGENESIS post-transcriptional regulation RNA binding proteins
下载PDF
Characteristics of long-distance mobile mRNAs from shoot to root in grafted plant species
19
作者 Mengmeng Fu Zhen Xu +7 位作者 Huaying Ma Yifan Hao Ji Tian Yi Wang Xinzhong Zhang Xuefeng Xu Zhenhai Han Ting Wu 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期25-37,共13页
Thousands of long-distance mobile mRNAs were identified from different grafting systems,based on high-throughput sequencing technology.Moreover,the long-distance delivery of RNAs was proved to involve multiple mechani... Thousands of long-distance mobile mRNAs were identified from different grafting systems,based on high-throughput sequencing technology.Moreover,the long-distance delivery of RNAs was proved to involve multiple mechanisms.Here,we analyzed the homology,motif,and tRNA-like structure(TLS)of long-distance mobile mRNAs identified by RNA-seq as well as the RNA-binding protein(RBP)in nine grafting combinations including Arabidopsis thaliana,Vitis vinifera,Cucumis sativus,Citrullus lanatus,Nicotiana benthamiana,Malus domestica,Pyrus spp.,Glycine max and Phaseolus vulgaris.Although several mRNAs were found to be shared in herbaceous,woody,and related species,the vast majority of long-distance mobile mRNAs were species-specific.Four non-specific movement-related motifs were identified,while the TLS was not necessary for mRNA long distance mobility.In addition,we found that RBPs were conserved among herbaceous and woody plants as well as related species.This paper reports a further in-depth analysis of the endogenous mechanisms by which the species-specific transportable m RNAs were selected by bioinformatics,in order to provide insights for future research on long-distance mobile mRNAs. 展开更多
关键词 Grafting combination Long-distance mobile mRNA TLS RNA binding proteins
下载PDF
Neuronal conversion from glia to replenish the lost neurons
20
作者 Shiyu Liang Jing Zhou +2 位作者 Xiaolin Yu Shuai Lu Ruitian Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1446-1453,共8页
Neuronal injury,aging,and cerebrovascular and neurodegenerative diseases such as cerebral infarction,Alzheimer’s disease,Parkinson’s disease,frontotemporal dementia,amyotrophic lateral sclerosis,and Huntington’s di... Neuronal injury,aging,and cerebrovascular and neurodegenerative diseases such as cerebral infarction,Alzheimer’s disease,Parkinson’s disease,frontotemporal dementia,amyotrophic lateral sclerosis,and Huntington’s disease are characte rized by significant neuronal loss.Unfo rtunately,the neurons of most mammals including humans do not possess the ability to self-regenerate.Replenishment of lost neurons becomes an appealing therapeutic strategy to reve rse the disease phenotype.Transplantation of pluripotent neural stem cells can supplement the missing neurons in the brain,but it carries the risk of causing gene mutation,tumorigenesis,severe inflammation,and obstructive hydrocephalus induced by brain edema.Conversion of neural or non-neural lineage cells into functional neurons is a promising strategy for the diseases involving neuron loss,which may overcome the above-mentioned disadvantages of neural stem cell therapy.Thus far,many strategies to transfo rm astrocytes,fibroblasts,microglia,Muller glia,NG2 cells,and other glial cells to mature and functional neurons,or for the conversion between neuronal subtypes have been developed thro ugh the regulation of transcription factors,polypyrimidine tra ct binding protein 1(PTBP1),and small chemical molecules or are based on a combination of several factors and the location in the central nervous system.However,some recent papers did not obtain expected results,and discrepancies exist.Therefore,in this review,we discuss the history of neuronal transdifferentiation,summarize the strategies for neuronal replenishment and conversion from glia,especially astrocytes,and point out that biosafety,new strategies,and the accurate origin of the truly co nverted neurons in vivo should be focused upon in future studies.It also arises the attention of replenishing the lost neurons from glia by gene therapies such as up-regulation of some transc ription factors or downregulation of PTBP1 or drug interfe rence therapies. 展开更多
关键词 ASTROCYTES neural stem cells neurodegenerative diseases neuron polypyrimidine tract binding protein 1 repair REPROGRAMMING small molecule transcription factor TRANSDIFFERENTIATION
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部