A novel system of fast pyrolysis and vapour quenching was developed at pilot scale to obtain bio-oil from biomass. The system uses three-stage of interconnected fluidized bed reactors that continuously circulate silic...A novel system of fast pyrolysis and vapour quenching was developed at pilot scale to obtain bio-oil from biomass. The system uses three-stage of interconnected fluidized bed reactors that continuously circulate silica sand from an internal pyrolysis reactor to a second external annular reactor for char burning, which generates most of the heat required by the pyrolysis reactor, and a third sand-preheating reactor that burns non-condensable pyrolysis gas. The hot vapours, after high temperature cleaning, are quenched in a flash cooling system. The process generates up to 62% of bio-oil, 25% of char and 13% of non-condensable gas. The heat requirements for the total system are provided by burning part of the char and non-condensable gases generated in the pyrolysis step and by preheating the fluidizing gas for the pyrolysis reactor.展开更多
A new kind of bio-fluid bed used to treat dyes wastewater is described in detail due to its several special features,such as high removal efficiency,simple struc-ture,shock load resistance,etc.By means of analyzing th...A new kind of bio-fluid bed used to treat dyes wastewater is described in detail due to its several special features,such as high removal efficiency,simple struc-ture,shock load resistance,etc.By means of analyzing the experiment data,the results show that the dye wastewater’s organic matter is removed greatly after be-ing treated by this new kind of bio-fluid bed.On the other hand,the removal efficiency of chromaticity of展开更多
Biomass utilization could relieve the pressure caused by conventional energy shortage and environmental pollution. Advantage should be taken of the abundant biomass in China as clean energy source to substitute for tr...Biomass utilization could relieve the pressure caused by conventional energy shortage and environmental pollution. Advantage should be taken of the abundant biomass in China as clean energy source to substitute for traditional fossil fuels. At present, flash pyrolysis appears to be an efficient method to produce high yields of liquids that could either be directly used as fuel or converted to other valuable chemicals. Experiments were carried out of pyrolyzing biomass particles in a hot dense fluidized bed of sand to obtain high-quality bio-oil. Among four kinds of biomass species adopted in our experiment, Padauk Wood had the best characteristics in producing bio-oil. GC-MS analysis showed bio-oil to be a complex mixture consisting of many compounds. Furthermore, an integrated model was proposed to reveal how temperature influences biomass pyrolysis. Computation indicated that biomass particles underwent rapid heating before pyrolysis.展开更多
Pilot test was made on coking plant wastewater of the Coal Chemical Corp.,Panzhihua Steel Group,China,with the biological fluidized-bed technique and A-A-O system.The results showed that when the total HTR of system w...Pilot test was made on coking plant wastewater of the Coal Chemical Corp.,Panzhihua Steel Group,China,with the biological fluidized-bed technique and A-A-O system.The results showed that when the total HTR of system was 45?h,effluent NH 3-N was 10.33?mg·L -1 ,effluent COD was less than 200?mg·L -1 ,and effluent phenol was 0.13?mg·L -1 .The operation cost is 3.60~4.36?$·(t wastewater) -1 .展开更多
Fluidized bed reactor is widely used in coal char-CO2 gasification. In this work, the production of syngas by using a fluidized bed gasification technique was first investigated and then the effect of the produced syn...Fluidized bed reactor is widely used in coal char-CO2 gasification. In this work, the production of syngas by using a fluidized bed gasification technique was first investigated and then the effect of the produced syngas on the performance of the solid oxide fuel cell with a configuration of La0.4Sr0.6Co0.2 Fe0.7 Nb0.1O3-δ//La0.8Sr0.2Ga0.83Mg0.17O3-δ//La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ(LSCFN//LSGM//LSCFN) was studied. During the syngas production, we found that the volume fraction of CO increased with the increment of gasification temperature, and it reached a maximum value of 88.8%, corresponding to a composition of 0.76% H2, 88.8% CO, and 10.44% CO2, when the ratio of oxygen mass flow rate to that of coal char (Mo2/Mchar) increased to 0.29. In the following utilization of the produced syngas in solid oxide fuel cells, it was found that the increasing CO volume fraction in the syngas results in a gradual increase of the peak power density of the LSCFN//LSGM//LSCFN cell. The maximum peak power density of 410 mW/cm^2 was achieved for the syngas produced at 0.29 of Mo2/Mchar. In the stability test, the cell voltage decreased by 4% at a constant current density of 0.475 A/cm^2 after 54 h when fueled with the syngas with the composition of 0.76% H2, 88.8% CO, and 10.44% CO2. It reveals that a carbon deposition with the content of 13.66% in the anode is attributed to the cell performance degradation.展开更多
文摘A novel system of fast pyrolysis and vapour quenching was developed at pilot scale to obtain bio-oil from biomass. The system uses three-stage of interconnected fluidized bed reactors that continuously circulate silica sand from an internal pyrolysis reactor to a second external annular reactor for char burning, which generates most of the heat required by the pyrolysis reactor, and a third sand-preheating reactor that burns non-condensable pyrolysis gas. The hot vapours, after high temperature cleaning, are quenched in a flash cooling system. The process generates up to 62% of bio-oil, 25% of char and 13% of non-condensable gas. The heat requirements for the total system are provided by burning part of the char and non-condensable gases generated in the pyrolysis step and by preheating the fluidizing gas for the pyrolysis reactor.
文摘A new kind of bio-fluid bed used to treat dyes wastewater is described in detail due to its several special features,such as high removal efficiency,simple struc-ture,shock load resistance,etc.By means of analyzing the experiment data,the results show that the dye wastewater’s organic matter is removed greatly after be-ing treated by this new kind of bio-fluid bed.On the other hand,the removal efficiency of chromaticity of
文摘Biomass utilization could relieve the pressure caused by conventional energy shortage and environmental pollution. Advantage should be taken of the abundant biomass in China as clean energy source to substitute for traditional fossil fuels. At present, flash pyrolysis appears to be an efficient method to produce high yields of liquids that could either be directly used as fuel or converted to other valuable chemicals. Experiments were carried out of pyrolyzing biomass particles in a hot dense fluidized bed of sand to obtain high-quality bio-oil. Among four kinds of biomass species adopted in our experiment, Padauk Wood had the best characteristics in producing bio-oil. GC-MS analysis showed bio-oil to be a complex mixture consisting of many compounds. Furthermore, an integrated model was proposed to reveal how temperature influences biomass pyrolysis. Computation indicated that biomass particles underwent rapid heating before pyrolysis.
文摘Pilot test was made on coking plant wastewater of the Coal Chemical Corp.,Panzhihua Steel Group,China,with the biological fluidized-bed technique and A-A-O system.The results showed that when the total HTR of system was 45?h,effluent NH 3-N was 10.33?mg·L -1 ,effluent COD was less than 200?mg·L -1 ,and effluent phenol was 0.13?mg·L -1 .The operation cost is 3.60~4.36?$·(t wastewater) -1 .
基金financially supported by the National Basic Research Program of China (Grant Nos. 2012CB215404, 2012CB215406)State Key Laboratory of Power Systems in Tsinghua University (No. SKLD15Z02, Fuel Cell Distributed Power Generation System)One-hundred Leading Talents Development Project for Progress on Science and Technology of Beijing (No. 041504130)
文摘Fluidized bed reactor is widely used in coal char-CO2 gasification. In this work, the production of syngas by using a fluidized bed gasification technique was first investigated and then the effect of the produced syngas on the performance of the solid oxide fuel cell with a configuration of La0.4Sr0.6Co0.2 Fe0.7 Nb0.1O3-δ//La0.8Sr0.2Ga0.83Mg0.17O3-δ//La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ(LSCFN//LSGM//LSCFN) was studied. During the syngas production, we found that the volume fraction of CO increased with the increment of gasification temperature, and it reached a maximum value of 88.8%, corresponding to a composition of 0.76% H2, 88.8% CO, and 10.44% CO2, when the ratio of oxygen mass flow rate to that of coal char (Mo2/Mchar) increased to 0.29. In the following utilization of the produced syngas in solid oxide fuel cells, it was found that the increasing CO volume fraction in the syngas results in a gradual increase of the peak power density of the LSCFN//LSGM//LSCFN cell. The maximum peak power density of 410 mW/cm^2 was achieved for the syngas produced at 0.29 of Mo2/Mchar. In the stability test, the cell voltage decreased by 4% at a constant current density of 0.475 A/cm^2 after 54 h when fueled with the syngas with the composition of 0.76% H2, 88.8% CO, and 10.44% CO2. It reveals that a carbon deposition with the content of 13.66% in the anode is attributed to the cell performance degradation.