Ameliorating waste treatment by technological improvements affects the economic and the ecological-environment benefits of intensive pig production. The objective of the research was to develop and test a method to de...Ameliorating waste treatment by technological improvements affects the economic and the ecological-environment benefits of intensive pig production. The objective of the research was to develop and test a method to determine the technical optimization to ameliorate waste treatment methods and gain insight into the relationship between technological options and the economic and ecological effects. We developed an integrated bio-economic model which incorporates the farming production and waste disposal systems to simulate the impact of technological improvements in pig manure treatment on economic and environmental benefits for the case of a pilot farm in Beijing, China. Based on different waste treatment technology options, three scenarios are applied for the simulation analysis of the model. The simulation results reveal that the economic-environmental benefits of the livestock farm could be improved by reducing the cropland manure application and increasing the composting production with the current technologies. Nevertheless, the technical efficiency, the waste treatment capacity and the economic benefits could be further improved by the introduction of new technologies. It implies that technological and economic support policies should be implemented comprehensively on waste disposal and resource utilization to promote sustainable development in intensive livestock production in China.展开更多
[ Objective ] The study aimed at treating wastewater treatment plant (WWTP) effluent by using bio-film reactor with filamentous bamboo as bio-carrier. [ Method] With the aid of a continuous flow reactor, a bio-film ...[ Objective ] The study aimed at treating wastewater treatment plant (WWTP) effluent by using bio-film reactor with filamentous bamboo as bio-carrier. [ Method] With the aid of a continuous flow reactor, a bio-film reactor using filamentous bamboo as bio-carrier was used to treat WWTP effluent with low C/N ratio, and the removal effects of CODc,, TN (total nitrogen), and NO3--N in the wastewater were analyzed.[ Result ] The average removal rates of CODcr, TN, and NO3- -N reached 47.7%, 23.6% and 34.5% when the C/N ratio of influent was around 2. In addi- tion, a stable bio-film was formed very well in the secondary effluent with low C/N ratio and hardly degradable organic pollutants. The pollutants could be removed effectively because of the excellent surface characteristics and compositions of filamentous bamboo. [ Conclusion] The research provides a new method to treat WWTP effluent with low C/N ratio.展开更多
In this review paper, Anaerobic Membrane Bioreactor (AnMBR) is considering as highly efficient and reliable technology for organic material removal from wastewater with no additional energy requirement for aeration. A...In this review paper, Anaerobic Membrane Bioreactor (AnMBR) is considering as highly efficient and reliable technology for organic material removal from wastewater with no additional energy requirement for aeration. AnMBR is a combination of conventional anaerobic technology and modern membrane system. AnMBR is cost effective alternative technology with pros of anaerobic microbial activity because Methogenic microorganism can convert organic pollutant load of wastewater into renewable energy in the form of methane rich biogas, this conversion is mainly done by transformation of organic matter into energy by high chemical oxygen demand (COD), total suspended solid (TSS) and pathogens removal. Methane rich biogas can be used as a storable source of supplemental energy for the production of heat or power thus AnMBR technology provides improved effluent quality, reliability, and efficiency over the other traditional technologies. This review paper is included the overview of AnMBR, the advantages over other wastewater treatment technology, operational constraints and the concerned factors that has affected the performances of implemented systems, applications of AnMBR for various types of wastewaters, research and development summary and future perspective for further research.展开更多
基金supported by the International Cooperation Project of Ministry of Science and Technology of China(MOST:2009DFA32710,BMBF(FKZ):0330847F)the Natural Science Foundation of Zhejiang Province,China(Y13G030168)
文摘Ameliorating waste treatment by technological improvements affects the economic and the ecological-environment benefits of intensive pig production. The objective of the research was to develop and test a method to determine the technical optimization to ameliorate waste treatment methods and gain insight into the relationship between technological options and the economic and ecological effects. We developed an integrated bio-economic model which incorporates the farming production and waste disposal systems to simulate the impact of technological improvements in pig manure treatment on economic and environmental benefits for the case of a pilot farm in Beijing, China. Based on different waste treatment technology options, three scenarios are applied for the simulation analysis of the model. The simulation results reveal that the economic-environmental benefits of the livestock farm could be improved by reducing the cropland manure application and increasing the composting production with the current technologies. Nevertheless, the technical efficiency, the waste treatment capacity and the economic benefits could be further improved by the introduction of new technologies. It implies that technological and economic support policies should be implemented comprehensively on waste disposal and resource utilization to promote sustainable development in intensive livestock production in China.
基金Supported by the Scientific Research Foundation for Postgraduates of ZhengZhou University (A1003) Open Foundation of Provincial Key Laboratory of Environmental Material and Environmental Engineering (K11027)
文摘[ Objective ] The study aimed at treating wastewater treatment plant (WWTP) effluent by using bio-film reactor with filamentous bamboo as bio-carrier. [ Method] With the aid of a continuous flow reactor, a bio-film reactor using filamentous bamboo as bio-carrier was used to treat WWTP effluent with low C/N ratio, and the removal effects of CODc,, TN (total nitrogen), and NO3--N in the wastewater were analyzed.[ Result ] The average removal rates of CODcr, TN, and NO3- -N reached 47.7%, 23.6% and 34.5% when the C/N ratio of influent was around 2. In addi- tion, a stable bio-film was formed very well in the secondary effluent with low C/N ratio and hardly degradable organic pollutants. The pollutants could be removed effectively because of the excellent surface characteristics and compositions of filamentous bamboo. [ Conclusion] The research provides a new method to treat WWTP effluent with low C/N ratio.
文摘In this review paper, Anaerobic Membrane Bioreactor (AnMBR) is considering as highly efficient and reliable technology for organic material removal from wastewater with no additional energy requirement for aeration. AnMBR is a combination of conventional anaerobic technology and modern membrane system. AnMBR is cost effective alternative technology with pros of anaerobic microbial activity because Methogenic microorganism can convert organic pollutant load of wastewater into renewable energy in the form of methane rich biogas, this conversion is mainly done by transformation of organic matter into energy by high chemical oxygen demand (COD), total suspended solid (TSS) and pathogens removal. Methane rich biogas can be used as a storable source of supplemental energy for the production of heat or power thus AnMBR technology provides improved effluent quality, reliability, and efficiency over the other traditional technologies. This review paper is included the overview of AnMBR, the advantages over other wastewater treatment technology, operational constraints and the concerned factors that has affected the performances of implemented systems, applications of AnMBR for various types of wastewaters, research and development summary and future perspective for further research.